Electronic Journal of Probability

On the critical probability in percolation

Svante Janson and Lutz Warnke

Full-text: Open access

Abstract

For percolation on finite transitive graphs, Nachmias and Peres suggested a characterization of the critical probability based on the logarithmic derivative of the susceptibility. As a first test-case, we study their suggestion for the Erdős–Rényi random graph $G_{n,p}$, and confirm that the logarithmic derivative has the desired properties: (i) its maximizer lies inside the critical window $p=1/n+\Theta (n^{-4/3})$, and (ii) the inverse of its maximum value coincides with the $\Theta (n^{-4/3})$–width of the critical window. We also prove that the maximizer is not located at $p=1/n$ or $p=1/(n-1)$, refuting a speculation of Peres.

Article information

Source
Electron. J. Probab., Volume 23 (2018), paper no. 1, 25 pp.

Dates
Received: 25 November 2016
Accepted: 27 March 2017
First available in Project Euclid: 12 January 2018

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1515726029

Digital Object Identifier
doi:10.1214/17-EJP52

Subjects
Primary: 05C80: Random graphs [See also 60B20] 60C05: Combinatorial probability 82B43: Percolation [See also 60K35] 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
random graph percolation phase transition critical probability critical window

Rights
Creative Commons Attribution 4.0 International License.

Citation

Janson, Svante; Warnke, Lutz. On the critical probability in percolation. Electron. J. Probab. 23 (2018), paper no. 1, 25 pp. doi:10.1214/17-EJP52. https://projecteuclid.org/euclid.ejp/1515726029


Export citation

References

  • [1] M. Aizenman and C. M. Newman. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984), 107–143.
  • [2] M. Ajtai, J. Komlós and E. Szemerédi. Largest random component of a $k$-cube. Combinatorica 2 (1982), 1–7.
  • [3] D. Aldous. Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Probab. 25 (1997), 812–854.
  • [4] B. Bollobás. The evolution of random graphs. Trans. Amer. Math. Soc. 286 (1984), 257–274.
  • [5] B. Bollobás, Y. Kohayakawa and T. Łuczak. The evolution of random subgraphs of the cube. Rand. Struct. & Algor. 3 (1992), 55–90.
  • [6] B. Bollobás and O. Riordan. Exploring hypergraphs with martingales. Rand. Struct. & Algor. 50 (2017), 325–352.
  • [7] C. Borgs, J.T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. I. The scaling window under the triangle condition. Rand. Struct. & Algor. 27 (2005), 137–184.
  • [8] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. II. The lace expansion and the triangle condition. Ann. Probab. 33 (2005), 1886–1944.
  • [9] C. Borgs, J. T. Chayes, R. van der Hofstad, G. Slade and J. Spencer. Random subgraphs of finite graphs. III. The phase transition for the $n$-cube. Combinatorica 26 (2006), 395–410.
  • [10] M. Dwass. The total progeny in a branching process and a related random walk. J. Appl. Probability 6 (1969), 682–686.
  • [11] P. Erdős and A. Rényi. On the evolution of random graphs. Magyar Tud. Akad. Mat. Kutató Int. Közl 5 (1960), 17–61.
  • [12] P. Erdős and A. Rényi. On the strength of connectedness of a random graph. Acta Math. Acad. Sci. Hungar. 12 (1961), 261–267.
  • [13] G. Grimmett. Percolation. Second edition, Springer, Berlin (1999).
  • [14] A. Gut. Probability: a Graduate Course. Springer, New York (2005).
  • [15] R. van der Hofstad and M. J. Luczak. Random subgraphs of the 2D Hamming graph: the supercritical phase. Probab. Theory & Related Fields 147 (2010), 1–41.
  • [16] R. van der Hofstad and A. Nachmias. Hypercube percolation. J. Eur. Math. Soc. 19 (2017), 725–814.
  • [17] R. van der Hofstad and A. Nachmias. Unlacing hypercube percolation: a survey. Metrika 77 (2014), 23–50.
  • [18] R. van der Hofstad and G. Slade. Expansion in $n^{-1}$ for percolation critical values on the $n$-cube and $\mathbb Z^n$: the first three terms. Combin. Probab. Comput. 15 (2006), 695–713.
  • [19] S. Janson. Brownian excursion area, Wright’s constants in graph enumeration, and other Brownian areas. Probab. Surv. 4 (2007), 80–145.
  • [20] S. Janson and G. Louchard. Tail estimates for the Brownian excursion area and other Brownian areas. Electronic J. Probab. 12 (2007), no. 58, 1600–1632.
  • [21] S. Janson, T. Łuczak and A. Ruciński. Random Graphs. Wiley-Interscience, New York (2000).
  • [22] S. Janson and M. J. Luczak. Susceptibility in subcritical random graphs. J. Math. Phys. 49 (2008), 125207.
  • [23] S. Janson and J. Spencer. A point process describing the component sizes in the critical window of the random graph evolution. Combin. Probab. Comput. 16 (2007), 631–658.
  • [24] G. Kozma and A. Nachmias. The Alexander–Orbach conjecture holds in high dimensions. Invent. Math. 178 (2009), 635–654.
  • [25] G. Kozma and A. Nachmias. A note about critical percolation on finite graphs. J. Theoret. Probab. 24 (2011), 1087–1096.
  • [26] Y. Long, A. Nachmias, W. Ning and Y. Peres. A power law of order $1/4$ for critical mean field Swendsen–Wang dynamics. Mem. Amer. Math. Soc. 232 (2014).
  • [27] G. Louchard. The Brownian excursion area: a numerical analysis. Comput. Math. Appl. 10 (1984), 413–417.
  • [28] T. Łuczak. Component behavior near the critical point of the random graph process. Rand. Struct. & Algor. 1 (1990), 287–310.
  • [29] G. A. Margulis. Probabilistic characteristics of graphs with large connectivity. (Russian.) Problemy Peredači Informacii 10 (1974), 101–108.
  • [30] A. Nachmias and Y. Peres. Critical random graphs: diameter and mixing time. Ann. Probab. 36 (2008), 1267–1286.
  • [31] NIST Handbook of Mathematical Functions. Eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark. Cambridge University Press (2010). Also available as NIST Digital Library of Mathematical Functions, http://dlmf.nist.gov/.
  • [32] Y. Peres. Personal communication (2012).
  • [33] O. Riordan and L. Warnke. The evolution of subcritical Achlioptas processes. Rand. Struct. & Algor. 47 (2015), 174–203.
  • [34] O. Riordan and L. Warnke. The phase transition in bounded-size Achlioptas processes. Preprint (2017). arXiv:1704.08714
  • [35] L. Russo. On the critical percolation probabilities. Z. Wahrsch. Verw. Gebiete 56 (1981), 229–237.
  • [36] J. Spencer. Enumerating graphs and Brownian motion. Comm. Pure Appl. Math. 50 (1997), 291–294.
  • [37] L. Warnke. Percolation thoughts. MSR-Internship Report (2012).
  • [38] E. M. Wright. The number of connected sparsely edged graphs. J. Graph Theory 1 (1977), 317–330.