Electronic Journal of Probability

On percolation critical probabilities and unimodular random graphs

Dorottya Beringer, Gábor Pete, and Ádám Timár

Full-text: Open access

Abstract

We investigate generalizations of the classical percolation critical probabilities $p_c$, $p_T$ and the critical probability $\tilde{p} _c$ defined by Duminil-Copin and Tassion [11] to bounded degree unimodular random graphs. We further examine Schramm’s conjecture in the case of unimodular random graphs: does ${p_c}(G_n)$ converge to ${p_c}(G)$ if $G_n\to G$ in the local weak sense? Among our results are the following:

  • ${p_c}={\tilde{p} _c}$ holds for bounded degree unimodular graphs. However, there are unimodular graphs with sub-exponential volume growth and ${p_T}<{p_c}$; i.e., the classical sharpness of phase transition does not hold.
  • We give conditions which imply $\lim{p_c} (G_n)= {p_c}(\lim G_n)$.
  • There are sequences of unimodular graphs such that $G_n\to G$ but ${p_c}(G)>\lim{p_c} (G_n)$ or ${p_c}(G)<\lim{p_c} (G_n)<1$.
As a corollary to our positive results, we show that for any transitive graph with sub-exponential volume growth there is a sequence $\mathcal{T} _n$ of large girth bi-Lipschitz invariant subgraphs such that ${p_c}(\mathcal{T} _n)\to 1$. It remains open whether this holds whenever the transitive graph has cost 1.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 106, 26 pp.

Dates
Received: 26 September 2016
Accepted: 6 November 2017
First available in Project Euclid: 28 December 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1514430042

Digital Object Identifier
doi:10.1214/17-EJP124

Mathematical Reviews number (MathSciNet)
MR3742403

Zentralblatt MATH identifier
06827083

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B43: Percolation [See also 60K35] 60B99: None of the above, but in this section 05C80: Random graphs [See also 60B20]

Keywords
percolation critical probability local weak convergence unimodular random rooted graphs

Rights
Creative Commons Attribution 4.0 International License.

Citation

Beringer, Dorottya; Pete, Gábor; Timár, Ádám. On percolation critical probabilities and unimodular random graphs. Electron. J. Probab. 22 (2017), paper no. 106, 26 pp. doi:10.1214/17-EJP124. https://projecteuclid.org/euclid.ejp/1514430042


Export citation

References

  • [1] Aizenman, M. and Barsky, D. (1987) Sharpness of the phase transition in percolation models, Comm. Math. Phys. Vol. 108, 489–526.
  • [2] Aldous, D. and Lyons, R. (2007) Processes on unimodular random networks, Electron. J. Probab. Vol. 12, Paper 54, 1454–1508.
  • [3] Antal, P. and Pisztora, A. (1996) On the chemical distance for supercritical Bernoulli percolation, The Annals of Probability Vol. 24, No. 2, 1036–1048
  • [4] Antunović, T. and Veselić, I. (2008) Sharpness of the phase transition and exponential decay of the subcritical cluster size for percolation on quasi-transitive graphs, J. Statist. Phys. Vol. 130, 983–1009. arXiv:math.PR/0707.1089
  • [5] Babai, L. (1979) Long cycles in vertex-transitive graphs, Journal of Graph Theory Vol. 3, 301–304.
  • [6] Backhausz, Á., Szegedy, B., and Virág, B. (2015) Ramanujan graphings and correlation decay in local algorithms. Random Structures Algorithms Vol. 47, 424–435. arXiv:math.PR/1305.6784
  • [7] Benjamini, I., Lyons, R., Peres, Y., and Schramm, O. (1999) Group-invariant percolation on graphs, Geom. Funct. Anal. Vol. 9, 29–66.
  • [8] Benjamini, I., Nachmias, A., and Peres, Y. (2011) Is the critical percolation probability local? Probab. Theory Relat. Fields Vol. 149, 261–269 arXiv:math.PR/0901.4616
  • [9] Benjamini, I. and Schramm, O. (2001) Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. Vol. 6, paper No. 23, 13 pp. (electronic). arXiv:math.PR/0011019
  • [10] Csikvári, P. and Frenkel, P. E. (2016) Benjamini–Schramm continuity of root moments of graph polynomials. Europ. J. Combin. Vol. 52, 302–320. arXiv:math.CO/1204.0463
  • [11] Duminil-Copin, H. and Tassion, V. (2016) A new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model, Comm. Math. Phys. Vol. 343, No. 2, 725–745. arXiv:math.PR/1502.03050
  • [12] Duminil-Copin, H. and Tassion, V. (2015) A new proof of the sharpness of the phase transition for Bernoulli percolation on $\mathbb{Z} ^d$, Enseign. Math. Vol. 62, Nos 1–2, 199–206. arXiv:math.PR/1502.03051
  • [13] Elek, G. (2007) The combinatorial cost, l’Enseignement Math. Vol. 53, 225–236. arXiv:math.GR/0608474
  • [14] Gaboriau, D. (2000). Coût des relations d’équivalence et des groupes, Invent. Math. Vol. 139, 41–98.
  • [15] Gaboriau, D. (2010) Orbit equivalence and measured group theory. In: Proceedings of the 2010 Hyderabad ICM Vol. 3, 1501–1527. arXiv:math.GR/1009.0132v1
  • [16] Grimmett, G. (1999) Percolation, 2nd edition, Springer-Verlag, Berlin
  • [17] Grimmett, G. R. and Li, Z. (2015) Locality of connective constants, I. Transitive graphs, arXiv:math.CO/1412.0150
  • [18] Grimmett, G. R. and Marstrand, J. M. (1990) The supercritical phase of percolation is well behaved Proc. Roy. Soc. London, Ser. A: Math. and Phys. Sci. Vol. 430, 439–457.
  • [19] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009) Poisson matching. Annales de l’Institut Henri Poincaré Vol. 45, No. 1, 266–287. arXiv:math.PR/0712.1867
  • [20] Levitt, G. (1995) On the cost of generating an equivalence relation. Ergodic Theory Dynam. Systems Vol. 15, 1173–1181.
  • [21] Liggett, T. M., Schonmann, R. H., Stacey, A. M. (1997) Domination by product measures The Annals of Probability Vol. 25, No. 1, 71–95.
  • [22] Lyons, R. (1990) Random walks and percolation on trees. Ann. Probab. Vol. 18, 931–958. arXiv:math.CO/0212165
  • [23] Lyons, R. (2005) Asymptotic enumeration of spanning trees. Combin. Probab. & Comput. Vol. 14, 491–522. arXiv:math.CO/0212165
  • [24] Lyons, R. (2017) Factors of IID on trees. Combin. Probab. Comput. Vol. 26, 285–300. arXiv:math.PR/1401.4197
  • [25] Lyons, R. and Nazarov, F. (2011) Perfect matchings as IID factors on non-amenable groups, Europ. J. Combin. Vol. 32, 1115–1125. arXiv:math.PR/0911.0092v2
  • [26] Lyons, R. and Peres, Y. (2016) Probability on trees and networks, Cambridge University Press, New York, http://mypage.iu.edu/~rdlyons
  • [27] Martineau, S. and Tassion, V. (2013) Locality of percolation for abelian Cayley graphs, Ann. Probab. Vol. 45, 1247–1277. arXiv:math.PR/1312.1946
  • [28] Menshikov, M. V. (1986) Coincidence of critical points in percolation problems, Soviet Mathematics Doklady Vol. 33, 856–859.
  • [29] Pak, I. and Radoičić, R. (2009) Hamiltonian paths in Cayley graphs, Discrete Mathematics Vol. 309, 5501–5508.
  • [30] Pete, G. (2015) Probability and geometry on groups. Lecture notes for a graduate course, Version of 3 August 2015. http://www.math.bme.hu/~gabor/PGG.pdf
  • [31] Soardi, P. M. and Woess, W. (1990) Amenability, unimodularity, and the spectral radius of random walks on infinite graphs. Math. Z. Vol. 205, 471–486.
  • [32] Woess, W. (2005) Lamplighters, Diestel-Leader graphs, random walks, and harmonic functions Combin. Probab. & Comput. Vol. 14, 415–433.