Electronic Journal of Probability

Branching Brownian motion, mean curvature flow and the motion of hybrid zones

Alison Etheridge, Nic Freeman, and Sarah Penington

Full-text: Open access


We provide a probabilistic proof of a well known connection between a special case of the Allen-Cahn equation and mean curvature flow. We then prove a corresponding result for scaling limits of the spatial $\Lambda $-Fleming-Viot process with selection, in which the selection mechanism is chosen to model what are known in population genetics as hybrid zones. Our proofs will exploit a duality with a system of branching (and coalescing) random walkers which is of some interest in its own right.

Article information

Electron. J. Probab., Volume 22 (2017), paper no. 103, 40 pp.

Received: 7 July 2017
Accepted: 17 November 2017
First available in Project Euclid: 7 December 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J85: Applications of branching processes [See also 92Dxx] 92D15: Problems related to evolution

branching Brownian motion mean curvature flow hybrid zones spatial $\Lambda $-Fleming-Viot population genetics

Creative Commons Attribution 4.0 International License.


Etheridge, Alison; Freeman, Nic; Penington, Sarah. Branching Brownian motion, mean curvature flow and the motion of hybrid zones. Electron. J. Probab. 22 (2017), paper no. 103, 40 pp. doi:10.1214/17-EJP127. https://projecteuclid.org/euclid.ejp/1512615692

Export citation


  • A Allen and J Cahn. A microscopic theory for antiphase boundary motion and its application to antiphase domain coursening. Acta Metall., 27:1084–1095, 1979.
  • N H Barton and G M Hewitt. Adaptation, speciation and hybrid zones. Nature, 341:497–503, 1989.
  • N H Barton, A M Etheridge, and A Véber. A new model for evolution in a spatial continuum. Electron. J. Probab., 15:162–216, 2010.
  • N H Barton, A M Etheridge, and A Véber. Modelling evolution in a spatial continuum. Journal of Statistical Mechanics: Theory and Experiment, 2013(01):P01002, 2013.
  • P Billingsley. Probability and Measure. Wiley, 1995.
  • L Bronsard and R Kohn. Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Diff. Eq., 90:211–217, 1991.
  • X Chen. Generation and propagation of interfaces for reaction-diffusion equations. J. Diff. Eq., 96:116–141, 1992.
  • A De Masi, P A Ferrari, and J L Lebowitz. Reaction-diffusion equations for interacting particle systems. J. Stat. Phys., 44(3/4):589–644, 1986.
  • A M Etheridge. Drift, draft and structure: some mathematical models of evolution. Banach Center Publ., 80:121–144, 2008.
  • A M Etheridge, A Véber, and F Yu. Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. arXiv preprint arXiv:1406.5884, 2014.
  • A M Etheridge, N Freeman, S Penington, and D Straulino. Branching Brownian motion and selection in the Spatial Lambda-Fleming-Viot process. arXiv preprint arXiv:1512.03766, 2015.
  • L C Evans and J Spruck. Motion of level sets by mean curvature I. J. Diff. Geom., 33:635–681, 1991.
  • L C Evans, H M Soner, and P E Souganidis. Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45:1097–1123, 1992.
  • R A Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7:355–369, 1937.
  • T Funaki and H Spohn. Motion by mean curvature from the Ginzburg-Landau $|\nabla \phi |$ interface model. Comm. Math. Phys., 185:1–36, 1997.
  • M Gage and R Hamilton. The heat equation shrinking convex plane curves. J. Diff. Geom., 23:417–491, 1986.
  • M A Grayson. The heat equation shrinks embedded plane curves to round points. J. Diff. Geom., 26:285–314, 1987.
  • M Hairer, M D Ryser, and H Weber. On the triviality of the 2D stochastic Allen-Cahn equation. Elect. J. Prob., 17(39):1–14, 2012.
  • G Huisken. Flow by mean curvature of convex surfaces into spheres. J. Diff. Geom., 20:237–266, 1984.
  • W G Hunt and R K Selander. Biochemical genetics of hybridization in European house mice. Heredity, 31:11–33, 1973.
  • T Ilmanen. Convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. J. Diff. Geom., 38:417–461, 1993.
  • S M Krone and C Neuhauser. Ancestral processes with selection. Theor. Pop. Biol., 51:210–237, 1997.
  • C Mantegazza. Lecture notes on mean curvature flow, volume 290 of Progress in Mathematics. Birkhäuser, 2011.
  • H P McKean. Application of Brownian motion to the equation of Kolmogorov-Petrovski-Piskunov. Comm. Pure Appl. Math., 28:323–331, 1975.
  • C Neuhauser and S M Krone. Genealogies of samples in models with selection. Genetics, 145:519–534, 1997.
  • N Sato. A simple proof of convergence of the Allen-Cahn equation to Brakke’s motion by mean curvature. Indiana Univ. Math. J., 57:1743–1752, 2008.
  • A V Skorohod. Branching diffusion processes. Th. Prob. Appl., 9:492–497, 1964.
  • A Véber and A Wakolbinger. The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation. Ann. Inst. H. Poincaré Probab. Statist., 51:570–598, 2015.
  • B White. Evolution of curves and surfaces by mean curvature. Proceedings of the International Congress of Mathematicians, Beijing 2002, I:525–538, 2002.