Electronic Journal of Probability

Asymptotic direction for random walks in mixing random environments

Enrique Guerra and Alejandro F. Ramírez

Full-text: Open access

Abstract

We prove that every random walk in a uniformly elliptic random environment satisfying the cone-mixing condition and a non-effective polynomial ballisticity condition with high enough degree has an asymptotic direction.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 92, 41 pp.

Dates
Received: 11 November 2016
Accepted: 11 August 2017
First available in Project Euclid: 24 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1508810545

Digital Object Identifier
doi:10.1214/17-EJP93

Mathematical Reviews number (MathSciNet)
MR3718720

Zentralblatt MATH identifier
06797902

Subjects
Primary: 60K37: Processes in random environments 82C41: Dynamics of random walks, random surfaces, lattice animals, etc. [See also 60G50] 82D30: Random media, disordered materials (including liquid crystals and spin glasses)

Keywords
random walk in random environment ballisticity conditions cone-mixing

Rights
Creative Commons Attribution 4.0 International License.

Citation

Guerra, Enrique; Ramírez, Alejandro F. Asymptotic direction for random walks in mixing random environments. Electron. J. Probab. 22 (2017), paper no. 92, 41 pp. doi:10.1214/17-EJP93. https://projecteuclid.org/euclid.ejp/1508810545


Export citation

References

  • [1] Berger, N.; Drewitz A. and Ramírez A.F.: Effective Polynomial Ballisticity Conditions for Random Walk in Random Environment. Comm. Pure. Appl. Math. 67, (2014) 1947–1973.
  • [2] Bramson M.; Zeitouni O. and Zerner M.: Shortest spanning tress and a counterexampe for random walks in random environments. Ann. Probab. 34, (2006) 821–856.
  • [3] Chernov A.A.: Replication of a multicomponent chain by the “lightning mechanism”. Biophys. 12, (1967) 336–341.
  • [4] Chung K.L.: Markov Chains with stationary transition probabilities. Grundlehren der mathematischen Wissenschaften, Springer-Verlag Berlin Heidelberg (1967).
  • [5] Comets F. and Zeitouni O.: A law of large numbers for random walks in random mixing environments. Ann. Probab. 32, (2004) 880–914.
  • [6] Comets F. and Zeitouni O.: Gaussian fluctuations for random walks in random mixing environments. Probability in mathematics. Israel J. Math. 148, (2005) 87–113.
  • [7] Drewitz A. and Ramírez A.F.: Selected topics in random walks in random environment. Topics in percolative and disordered systems, 23–83, Springer Proc. Math. Stat., 69, Springer, New York, (2014).
  • [8] Fribergh A.; Gantert N. and Popov S.: On slowdown and speedup of transient random walks in random environment. Probab. Theory Related Fields 147, (2010) 43–88.
  • [9] Kalikow S.: Generalized random walks in random environment. Ann. Probab. 9, (1981) 753–768.
  • [10] Kesten H.; Kozlov M.V. and Spitzer F.: A limit law for random walk in a random environment. Compositio Math. 30, (1975) 145–168.
  • [11] Molchanov S.: Lectures on random media. Lectures on probability theory (Saint-Flour, 1992), 242–411, Lecture Notes in Math., 1581, Springer, Berlin, (1994).
  • [12] Rassoul-Agha F.: The point of view of the particle on the law of large numbers for random walks in a mixing random environment. Ann. Probab. 31, (2003) 1441–1463.
  • [13] Simenhaus F.: Asymptotic direction for random walks in random environments. Ann. Inst. H. Poincaré Probab. Statist. 43, (2007) 751–761.
  • [14] Sinai Y. S.: The limiting behavior of a one-dimensional random walk in a random envrionment. Theory Prob. Appl. 27, (1982) 247–258.
  • [15] Solomon F.: Random walks in a random environment. Ann. Probab. 3, (1975) 1–31.
  • [16] Sznitman A.S. and Zerner M.: A law of large numbers for random walks in random environment. Ann. Probab. 27, (1999) 1851–1869.
  • [17] Sznitman. A.S.: Slowdown estimates and central limit theorem for random walks in random environment. J. Eur. Math. Soc. 2, (2000) 93–143.
  • [18] Sznitman. A.S.: On a class of transient random walks in random environment. Ann. Probab. 29, (2001) 724–765.
  • [19] Sznitman. A.S.: An effective criterion for ballistic behavior of random walks in random environment. Probab. Theory Related Fields 122, (2002) 509–544.
  • [20] Sznitman. A.S.: On new examples of ballistic random walks in random environment. Ann. Probab. 31, (2003) 285–322.
  • [21] Temkin D.E.: The theory of diffusionless crystal growth. Journal of Crystal Growth, 5, (1969) 193–202.
  • [22] Williams D.: Probability with martingales. Cambridge Mathematical Textbooks. Cambridge Univ. Press (1991).
  • [23] Zeitouni O.: Random walks in random environment. Lectures on probability theory and statistics, 189–312, Lecture Notes in Math., 1837, Springer, Berlin, (2004).