Electronic Journal of Probability

Boundary arm exponents for SLE

Hao Wu and Dapeng Zhan

Full-text: Open access

Abstract

We derive boundary arm exponents for SLE. These exponents were predicted by the conformal field theory and KPZ relation. We provide a rigorous derivation. Furthermore, these exponents give the alternating half-plane arm exponents for the planar critical Ising and FK-Ising models.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 89, 26 pp.

Dates
Received: 21 June 2016
Accepted: 19 September 2017
First available in Project Euclid: 18 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1508292260

Digital Object Identifier
doi:10.1214/17-EJP110

Mathematical Reviews number (MathSciNet)
MR3718717

Zentralblatt MATH identifier
06797899

Subjects
Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)

Keywords
Schramm Loewner evolution boundary arm exponents

Rights
Creative Commons Attribution 4.0 International License.

Citation

Wu, Hao; Zhan, Dapeng. Boundary arm exponents for SLE. Electron. J. Probab. 22 (2017), paper no. 89, 26 pp. doi:10.1214/17-EJP110. https://projecteuclid.org/euclid.ejp/1508292260


Export citation

References

  • [ABV16] Tom Alberts, Ilia Binder, and Fredrik Viklund. A dimension spectrum for SLE boundary collisions. Comm. Math. Phys., 343(1):273–298, 2016.
  • [Ahl06] Lars V Ahlfors. Lectures on quasiconformal mappings. with supplemental chapters by CJ Earle, I. Kra, M. Shishikura and JH Hubbard. University lecture series, 38. American Mathematical Society, Providence, RI, 1(4):12, 2006.
  • [Ahl10] Lars Valerian Ahlfors. Conformal invariants: topics in geometric function theory, volume 371. American Mathematical Soc., 2010.
  • [AS08] Tom Alberts and Scott Sheffield. Hausdorff dimension of the SLE curve intersected with the real line. Electron. J. Probab., 13:no. 40, 1166–1188, 2008.
  • [CDCH+14] Dmitry Chelkak, Hugo Duminil-Copin, Clément Hongler, Antti Kemppainen, and Stanislav Smirnov. Convergence of Ising interfaces to Schramm’s SLE curves. Comptes Rendus Mathematique, 352(2):157–161, 2014.
  • [CDCH16] Dmitry Chelkak, Hugo Duminil-Copin, and Clément Hongler. Crossing probabilities in topological rectangles for the critical planar FK-Ising model. Electron. J. Probab., 21:Paper No. 5, 28, 2016.
  • [CS12] Dmitry Chelkak and Stanislav Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. Invent. Math., 189(3):515–580, 2012.
  • [DS11] Bertrand Duplantier and Scott Sheffield. Liouville quantum gravity and KPZ. Invent. Math., 185(2):333–393, 2011.
  • [Dub09] Julien Dubédat. Duality of Schramm-Loewner evolutions. Ann. Sci. Éc. Norm. Supér. (4), 42(5):697–724, 2009.
  • [Dup03] Bertrand Duplantier. Conformal fractal geometry and boundary quantum gravity. arXiv preprint math-ph/0303034, 2003.
  • [Kes87] Harry Kesten. Scaling relations for 2d-percolation. Communications in Mathematical Physics, 109(1):109–156, 1987.
  • [Law05] Gregory F. Lawler. Conformally invariant processes in the plane, volume 114 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2005.
  • [Law15] Gregory F. Lawler. Minkowski content of the intersection of a Schramm-Loewner evolution (SLE) curve with the real line. J. Math. Soc. Japan, 67(4):1631–1669, 2015.
  • [LSW01] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Values of Brownian intersection exponents. I. Half-plane exponents. Acta Math., 187(2):237–273, 2001.
  • [LSW04] Gregory F. Lawler, Oded Schramm, and Wendelin Werner. Conformal invariance of planar loop-erased random walks and uniform spanning trees. Ann. Probab., 32(1B):939–995, 2004.
  • [MS16] Jason Miller and Scott Sheffield. Imaginary geometry I: Interacting SLEs. Probab. Theory Related Fields, 164(3-4):553–705, 2016.
  • [RS05] Steffen Rohde and Oded Schramm. Basic properties of SLE. Ann. of Math. (2), 161(2):883–924, 2005.
  • [Sch00] Oded Schramm. Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118:221–288, 2000.
  • [Smi01] Stanislav Smirnov. Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits. C. R. Acad. Sci. Paris Sér. I Math., 333(3):239–244, 2001.
  • [SS09] Oded Schramm and Scott Sheffield. Contour lines of the two-dimensional discrete Gaussian free field. Acta Math., 202(1):21–137, 2009.
  • [SW01] Stanislav Smirnov and Wendelin Werner. Critical exponents for two-dimensional percolation. Math. Res. Lett., 8(5-6):729–744, 2001.
  • [SW05] Oded Schramm and David B. Wilson. SLE coordinate changes. New York J. Math., 11:659–669 (electronic), 2005.
  • [Wu16a] Hao Wu. Alternating Arm Exponents for the Critical Planar Ising model, 2016. arXiv:1605.00985
  • [Wu16b] Hao Wu. Polychromatic Arm Exponents for the Critical Planar FK-Ising Model, 2016. arXiv:1604.06639
  • [Zha08] Dapeng Zhan. The scaling limits of planar LERW in finitely connected domains. Ann. Probab., 36(2):467–529, 2008.
  • [Zha16] Dapeng Zhan. Ergodicity of the tip of an sle curve. Probability Theory and Related Fields, 164(1-2):333–360, 2016.