Electronic Journal of Probability

Inequalities for critical exponents in $d$-dimensional sandpiles

Sandeep Bhupatiraju, Jack Hanson, and Antal A. Járai

Full-text: Open access

Abstract

Consider the Abelian sandpile measure on $\mathbb{Z} ^d$, $d \ge 2$, obtained as the $L \to \infty $ limit of the stationary distribution of the sandpile on $[-L,L]^d \cap \mathbb{Z} ^d$. When adding a grain of sand at the origin, some region, called the avalanche cluster, topples during stabilization. We prove bounds on the behaviour of various avalanche characteristics: the probability that a given vertex topples, the radius of the toppled region, and the number of vertices toppled. Our results yield rigorous inequalities for the relevant critical exponents. In $d = 2$, we show that for any $1 \le k < \infty $, the last $k$ waves of the avalanche have an infinite volume limit, satisfying a power law upper bound on the tail of the radius distribution.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 85, 51 pp.

Dates
Received: 21 February 2016
Accepted: 20 September 2017
First available in Project Euclid: 14 October 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1507946760

Digital Object Identifier
doi:10.1214/17-EJP111

Mathematical Reviews number (MathSciNet)
MR3718713

Zentralblatt MATH identifier
06797895

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
Abelian sandpile critical exponent wave uniform spanning tree loop-erased random walk

Rights
Creative Commons Attribution 4.0 International License.

Citation

Bhupatiraju, Sandeep; Hanson, Jack; Járai, Antal A. Inequalities for critical exponents in $d$-dimensional sandpiles. Electron. J. Probab. 22 (2017), paper no. 85, 51 pp. doi:10.1214/17-EJP111. https://projecteuclid.org/euclid.ejp/1507946760


Export citation

References

  • [1] D. J. Aldous and R. Lyons (2007). Processes on unimodular random networks. Electron. J. Probab. 12 no. 54, 1454–1508 (electronic).
  • [2] S. R. Athreya and A. A. Járai (2004). Infinite volume limit for the stationary distribution of Abelian sandpile models. Commun. Math. Phys. 249 197–213.
  • [3] P. Bak, C. Tang and K. Wiesenfeld (1988). Self-organized criticality, Phys. Rev. A 38 364–374.
  • [4] M. T. Barlow and D. Karli (2015). Some remarks on uniform boundary Harnack Principles. Preprint. arXiv:1507.04115
  • [5] M. T. Barlow and A. A. Járai (2016). Geometry of uniform spanning forest components in high dimensions. Preprint. arXiv:1602.01505
  • [6] I. Benjamini, R. Lyons, Y. Peres and O. Schramm (2001). Uniform spanning forests. Ann. Probab. 29, 1–65.
  • [7] I. Benjamini and O. Schramm (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Probab. 6, no. 23, 13 pp. (electronic).
  • [8] D. Dhar (1990). Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64, 1613–1616.
  • [9] D. Dhar (2006). Theoretical studies of self-organized criticality. Phys. A: 369, 29-70.
  • [10] S. L. Gamlin and A. A. Járai (2014). Anchored burning bijections on finite and infinite graphs, Electron. J. Probab. 19, no. 117, 23 pp.
  • [11] A. Fey-den Boer and F. Redig (2008). Limiting shapes for deterministic centrally seeded growth models. J. Stat. Phys. 130, 579–597.
  • [12] A. E. Holroyd, L. Levine, K. Mészáros, Y. Peres, J. Propp and D. B. Wilson (2008). Chip-firing and rotor-routing on directed graphs. In and out of equilibrium. 2, Progr. Probab. 60, Birkhäuser, Basel, 331–364.
  • [13] E. V. Ivashkevich, D. V. Ktitarev and V. B. Priezzhev (1994). Waves of topplings in an Abelian sandpile. Physica A: Statistical Mechanics and its Applications, 209, 347–360.
  • [14] A. A. Járai (2014). Sandpile models. Preprint. arXiv:1401.0354
  • [15] A. A. Járai and F. Redig (2008). Infinite volume limit of the Abelian sandpile model in dimensions $d \geq 3$. Probab. Theory Related Fields 141, 181–212.
  • [16] A. A. Járai, F. Redig and E. Saada (2015). Approaching criticality via the zero-dissipation limit in the abelian avalanche model. J. Stat. Phys. 159, 1369–1407.
  • [17] A. A. Járai and N. Werning (2014). Minimal configurations and sandpile measures. J. Theoret. Probab. 27, 153–167.
  • [18] R. Kenyon (2000). The asymptotic determinant of the discrete Laplacian. Acta Math. 185, 239–286.
  • [19] H. Kesten (1987). Hitting probabilities of random walks on $\mathbf{Z} ^d$. Stochastic Process. Appl. 25, 165–184.
  • [20] H. Kesten (1987). Scaling relations for 2D-percolation. Comm. Math. Phys. 109, 109–156.
  • [21] G. F. Lawler (1995). The logarithmic correction for loop-erased walk in four dimensions. Proceedings of the Conference in Honor of Jean-Pierre Kahane (Orsay, 1993), J. Fourier Anal. Appl. Special Issue, 347–361.
  • [22] G. F. Lawler (1996). Cut times for simple random walk. Electron. J. Probab. 1, Paper no. 13.
  • [23] G. F. Lawler (1996). Intersections of Random Walks. Birkhäuser, Boston.
  • [24] G. F. Lawler and V. Limic (2010). Random walk: a modern introduction. Cambridge studies in advanced mathematics, Vol. 123, Cambridge University Press, Cambridge.
  • [25] R. Lyons, B. J. Morris and O. Schramm (2008). Ends in uniform spanning forests. Electron. J. Probab. 13, Paper no. 58.
  • [26] R. Lyons and Y. Peres (2016). Probability on trees and networks, Cambridge Series in Statistical and Probabilistic Mathematics, 42, Cambridge University Press, New York.
  • [27] R. Lyons, Y. Peres and O. Schramm (2003). Markov chain intersections and the loop-erased walk. Ann. Inst. H. Poincaré Probab. Statist. 39, 779–791.
  • [28] S.N. Majumdar and D. Dhar (1992). Equivalence between the Abelian sandpile model and the $q \to 0$ limit of the Potts model. Physica A: Statistical Mechanics and its Applications 185, 129–145.
  • [29] R. Masson (2009). The growth exponent for planar loop-erased random walk. Electron. J. Probab. 14, Paper no. 36.
  • [30] B. Morris (2003). The components of the wired spanning forest are recurrent. Probab. Theory Related Fields 125, no. 2, 259–265.
  • [31] R. Pemantle (1991). Choosing a spanning tree for the integer lattice uniformly. Ann. Probab. 19, 1559–1574.
  • [32] V. B. Priezzhev (2000). The upper critical dimension of the Abelian sandpile model. J. Statist. Phys. 98, 667–684.
  • [33] F. Redig (2006). Mathematical aspects of the abelian sandpile model, in Mathematical statistical physics, 657–729, Elsevier B. V., Amsterdam.
  • [34] D. Shiraishi (2016). Growth exponent for loop-erased random walk in three dimensions. Preprint. arXiv:1310.1682.
  • [35] D. B. Wilson (1996). Generating random spanning trees more quickly than the cover time, in Proceedings of the Twenty-eighth Annual ACM Symposium on the Theory of Computing (Philadelphia, PA, 1996), 296–303, ACM, New York.
  • [36] W. Woess (2000). Random walks on infinite graphs and groups. Cambridge Tracts in Mathematics 138, Cambridge University Press, Cambridge.