Electronic Journal of Probability

Metastability in the reversible inclusion process

Alessandra Bianchi, Sander Dommers, and Cristian Giardinà

Full-text: Open access

Abstract

We study the condensation regime of the finite reversible inclusion process, i.e., the inclusion process on a finite graph $S$ with an underlying random walk that admits a reversible measure. We assume that the random walk kernel is irreducible and its reversible measure takes maximum value on a subset of vertices $S_{\star }\subseteq S$. We consider initial conditions corresponding to a single condensate that is localized on one of those vertices and study the metastable (or tunneling) dynamics. We find that, if the random walk restricted to $S_{\star }$ is irreducible, then there exists a single time-scale for the condensate motion. In this case we compute this typical time-scale and characterize the law of the (properly rescaled) limiting process. If the restriction of the random walk to $S_{\star }$ has several connected components, a metastability scenario with multiple time-scales emerges. We prove such a scenario, involving two additional time-scales, in a one-dimensional setting with two metastable states and nearest-neighbor jumps.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 70, 34 pp.

Dates
Received: 11 February 2017
Accepted: 21 August 2017
First available in Project Euclid: 13 September 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1505268101

Digital Object Identifier
doi:10.1214/17-EJP98

Mathematical Reviews number (MathSciNet)
MR3698739

Zentralblatt MATH identifier
06797880

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35] 82C20: Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs

Keywords
inclusion process metastability potential theory capacity

Rights
Creative Commons Attribution 4.0 International License.

Citation

Bianchi, Alessandra; Dommers, Sander; Giardinà, Cristian. Metastability in the reversible inclusion process. Electron. J. Probab. 22 (2017), paper no. 70, 34 pp. doi:10.1214/17-EJP98. https://projecteuclid.org/euclid.ejp/1505268101


Export citation

References

  • [1] I. Armendáriz, S. Grosskinsky and M. Loulakis. Metastability in a condensing zero-range process in the thermodynamic limit. Probability Theory and Related Fields, Online First, DOI: 10.1007/s00440-016-0728-y, (2016).
  • [2] I. Armendáriz and M. Loulakis. Thermodynamic limit for the invariant measures in supercritical zero range processes. Probability Theory and Related Fields, 145(1): 175–188, (2009).
  • [3] J. Beltrán and C. Landim. Tunneling and metastability of continuous time Markov chains. Journal of Statistical Physics, 140(6): 1065–1114, (2010).
  • [4] J. Beltrán and C. Landim. Metastability of reversible finite state Markov processes. Stochastic Processes and their Applications, 121(8): 1633–1677, (2011).
  • [5] J. Beltrán and C. Landim. Metastability of reversible condensed zero range processes on a finite set. Probability Theory and Related Fields, 152(3): 781–807, (2012).
  • [6] J. Beltrán and C. Landim. A martingale approach to metastability. Probability Theory and Related Fields, 161(1–2): 267–307, (2015).
  • [7] A. Bianchi, A. Bovier and D. Ioffe. Sharp asymptotics for metastability in the random field Curie-Weiss model. Electronic Journal of Probability, 14(53): 1541–1603, (2009).
  • [8] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability in stochastic dynamics of disordered mean-field models. Probability Theory and Related Fields, 119(1): 99–161, (2001).
  • [9] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability and low lying spectra in reversible Markov chains. Communications in Mathematical Physics, 228(2): 219–255, (2002).
  • [10] A. Bovier, M. Eckhoff, V. Gayrard and M. Klein. Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Journal of the European Mathematical Society, 6(4): 399–424, (2004).
  • [11] A. Bovier and F. den Hollander. Metastability. A Potential-Theoretic Approach. Springer International Publishing, (2015).
  • [12] A. Bovier and R. Neukirch. A note on metastable behaviour in the zero-range process. Chapter in Singular Phenomena and Scaling in Mathematical Models, Springer International Publishing: 69–90, (2014).
  • [13] G. Carinci, C. Giardinà, C. Giberti and F. Redig. Dualities in population genetics: a fresh look with new dualities. Stochastic Processes and their Applications, 125(3): 941–969, (2014).
  • [14] E.N.M. Cirillo and F.R. Nardi. Relaxation height in energy landscapes: an application to multiple metastable states. Journal of Statistical Physics, 150(6): 1080–1114, (2013).
  • [15] P. Cirillo, F. Redig and W. Ruszel. Duality and stationary distributions of wealth distribution models. Journal of Physics A: Mathematical and Theoretical, 47(8): 085203, (2014).
  • [16] C. Cocozza-Thivent. Processus des misanthropes. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete, 70(4): 509–523, (1985).
  • [17] M.R. Evans and B. Waclaw. Condensation in stochastic mass transport models: beyond the zero-range process. Journal of Physics A: Mathematical and Theoretical, 47(9): 095001, (2014).
  • [18] C. Giardinà, J. Kurchan and F. Redig. Duality and exact correlations for a model of heat conduction. Journal of Mathematical Physics, 48(3): 033301, (2007).
  • [19] C. Giardinà, J. Kurchan, F. Redig and K. Vafayi. Duality and hidden symmetries in interacting particle systems. Journal of Statistical Physics, 135(1): 25–55, (2009).
  • [20] C. Giardinà, F. Redig and K. Vafayi. Correlation Inequalities for interacting particle systems with duality. Journal of Statistical Physics, 141(2): 242–263, (2010).
  • [21] S. Grosskinsky, F. Redig and K. Vafayi. Condensation in the inclusion process and related models. Journal of Statistical Physics, 142(5): 952–974, (2011).
  • [22] S. Grosskinsky, F. Redig and K. Vafayi. Dynamics of condensation in the symmetric inclusion process. Electronic Journal of Probability, 18(66): 1–23, (2013).
  • [23] S. Grosskinsky, G.M. Schütz and H. Spohn. Condensation in the zero range process: stationary and dynamical properties. Journal of Statistical Physics, 113(3–4): 389–410, (2003).
  • [24] C. Landim. A topology for limits of Markov chains. Stochastic Processes and their Applications, 125(3): 1058–1088, (2015).
  • [25] C. Landim. Metastability for a non-reversible dynamics: the evolution of the condensate in totally asymmetric zero range processes. Communications in Mathematical Physics, 330(1): 1–32, (2014).
  • [26] C. Landim and P. Lemire. Metastability of the two-dimensional Blume-Capel model with zero chemical potential and small magnetic field. Journal of Statistical Physics, 164(2): 346–376, (2016).
  • [27] D.A. Levin, Y. Peres and E.L. Wilmer. Markov chains and mixing times. American Mathematical Society, Providence, RI, (2009).
  • [28] E. Olivieri and M.E. Vares. Large Deviations and Metastability. Cambridge University Press, (2005).
  • [29] J.G. Wendel. Note on the gamma function. The American Mathematical Monthly, 55(9): 563–564, (1948).