Electronic Journal of Probability

The Brownian net and selection in the spatial $\Lambda $-Fleming-Viot process

Alison Etheridge, Nic Freeman, and Daniel Straulino

Full-text: Open access

Abstract

We obtain the Brownian net of [24] as the scaling limit of the paths traced out by a system of continuous (one-dimensional) space and time branching and coalescing random walks. This demonstrates a certain universality of the net, which we have not seen explored elsewhere. The walks themselves arise in a natural way as the ancestral lineages relating individuals in a sample from a biological population evolving according to the spatial Lambda-Fleming-Viot process. Our scaling reveals the effect, in dimension one, of spatial structure on the spread of a selectively advantageous gene through such a population.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 39, 36 pp.

Dates
Received: 23 November 2016
Accepted: 23 April 2017
First available in Project Euclid: 28 April 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1493345026

Digital Object Identifier
doi:10.1214/17-EJP61

Mathematical Reviews number (MathSciNet)
MR3646065

Zentralblatt MATH identifier
1364.60104

Subjects
Primary: 60G99: None of the above, but in this section 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Brownian net spatial $\Lambda $-Fleming-Viot branching coalescing

Rights
Creative Commons Attribution 4.0 International License.

Citation

Etheridge, Alison; Freeman, Nic; Straulino, Daniel. The Brownian net and selection in the spatial $\Lambda $-Fleming-Viot process. Electron. J. Probab. 22 (2017), paper no. 39, 36 pp. doi:10.1214/17-EJP61. https://projecteuclid.org/euclid.ejp/1493345026


Export citation

References

  • [1] R A Arratia, Coalescing Brownian motions on the line, University of Wisconsin–Madison, 1979.
  • [2] N H Barton, A M Etheridge, and A Véber, A new model for evolution in a spatial continuum, Electron. J. Probab. 15 (2010), 162–216.
  • [3] N H Barton, A M Etheridge, and A Véber, Modelling evolution in a spatial continuum, Journal of Statistical Mechanics: Theory and Experiment 01 (2013), P01002.
  • [4] N Berestycki, A M Etheridge, and A Véber, Large-scale behaviour of the spatial $\Lambda $-Fleming-Viot process, Ann. Inst. H. Poincaré 49 (2013), no. 2, 374–401.
  • [5] P Billingsley, Probability and Measure, Wiley, 1995.
  • [6] A Etheridge, N Freeman, S Penington, and D Straulino, Branching Brownian motion and Selection in the Spatial Lambda-Fleming-Viot process, to appear in Ann. Appl. Probab., arXiv:1512.03766 (2016).
  • [7] A Etheridge, S Wang, and F Yu, Conditioning the logistic branching process on non-extinction, Preprint (2015).
  • [8] A M Etheridge, Drift, draft and structure: some mathematical models of evolution, Banach Center Publ. 80 (2008), 121–144.
  • [9] A M Etheridge and T G Kurtz, Genealogical constructions of population models, arXiv:1402.6724 (2014).
  • [10] A M Etheridge, A Véber, and F Yu, Rescaling limits of the spatial Lambda-Fleming-Viot process with selection, arXiv:1406.5884 (2014).
  • [11] S N Ethier and T G Kurtz, Markov processes: characterization and convergence, Wiley (1986).
  • [12] P A Ferrari, L R G Fontes, and X-Y Wu, Two-dimensional poisson trees converge to the Brownian web, arXiv:math/0304247 (2003).
  • [13] P A Ferrari, L R G Fontes, and X-Y Wu, Two-dimensional poisson trees converge to the Brownian web, Annales de l’Institut Henri Poincaré (B) Probability and Statistics 41 (2005), no. 5, 851–858.
  • [14] P A Ferrari, C Landim, and H Thorisson, Poisson trees, succession lines and coalescing random walks, Annales de l’Institut Henri Poincaré (B) Probability and Statistics 40 (2004), no. 2, 141–152.
  • [15] L R G Fontes, M Isopi, C M Newman, and K Ravishankar, The Brownian web: characterization and convergence, The Annals of Probability 32 (2004), no. 4, 2857–2883.
  • [16] S M Krone and C Neuhauser, Ancestral processes with selection, Theor. Pop. Biol. 51 (1997), 210–237.
  • [17] B Micaux, Flots stochastiques d’opérateurs dirigés par des bruits gaussiens et poissonniens. 2007, Thèse présentée pour obtenir le grade de docteur en sciences de l’université Paris XI, spécialité mathématiques (2007).
  • [18] C Neuhauser and S M Krone, Genealogies of samples in models with selection, Genetics 145 (1997), 519–534.
  • [19] C M Newman, K Ravishankar, and E Schertzer, Brownian net with killing, Stoch. Proc. Appl. 125 (2015), no. 3, 1148–1194.
  • [20] C M Newman, K Ravishankar, and R Sun, Convergence of coalescing nonsimple random walks to the Brownian web, Electron. J. Probab. 10 (2005), 21–60.
  • [21] E Schertzer, R Sun, and J M Swart, Stochastic flows in the Brownian web and net, Memoirs Amer. Math. Soc. 227 (2014).
  • [22] E Schertzer, R Sun, and J M Swart, The Brownian web, the Brownian net, and their universality, arXiv:1506.00724 (2015), 1–80.
  • [23] D Straulino, Selection in a spatially structured population, DPhil thesis, University of Oxford, 2014.
  • [24] R Sun and J M Swart, The Brownian net, The Annals of Probability (2008), 1153–1208.
  • [25] A Véber and A Wakolbinger, The spatial Lambda-Fleming-Viot process: an event-based construction and a lookdown representation, Ann. Inst. H. Poincaré Probab. Statist. (to appear), arXiv:1212.5909v2 (2013).