Electronic Journal of Probability

Absorbing-state transition for Stochastic Sandpiles and Activated Random Walks

Vladas Sidoravicius and Augusto Teixeira

Full-text: Open access


We study the dynamics of two conservative lattice gas models on the infinite $d$-dimensional hypercubic lattice: the Activated Random Walks (ARW) and the Stochastic Sandpiles Model (SSM), introduced in the physics literature in the early nineties. Theoretical arguments and numerical analysis predicted that the ARW and SSM undergo a phase transition between an absorbing phase and an active phase as the initial density crosses a critical threshold. However a rigorous proof of the existence of an absorbing phase was known only for one-dimensional systems. In the present work we establish the existence of such phase transition in any dimension. Moreover, we obtain several quantitative bounds for how fast the activity ceases at a given site or on a finite system. The multi-scale analysis developed here can be extended to other contexts providing an efficient tool to study non-equilibrium phase transitions.

Article information

Electron. J. Probab. Volume 22 (2017), paper no. 33, 35 pp.

Received: 4 January 2016
Accepted: 15 March 2017
First available in Project Euclid: 13 April 2017

Permanent link to this document

Digital Object Identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C20: Dynamic lattice systems (kinetic Ising, etc.) and systems on graphs 82C22: Interacting particle systems [See also 60K35] 82C26: Dynamic and nonequilibrium phase transitions (general)

Particle systems absorption sandpiles non-equilibrium phase transitions

Creative Commons Attribution 4.0 International License.


Sidoravicius, Vladas; Teixeira, Augusto. Absorbing-state transition for Stochastic Sandpiles and Activated Random Walks. Electron. J. Probab. 22 (2017), paper no. 33, 35 pp. doi:10.1214/17-EJP50. https://projecteuclid.org/euclid.ejp/1492070448

Export citation


  • [1] Per Bak, Chao Tang, and Kurt Wiesenfeld, Self-organized criticality, Phys. Rev. A (3) 38 (1988), no. 1, 364–374.
  • [2] B. Bond and L. Levine, Abelian networks: foundations and examples, ArXiv e-prints (2013).
  • [3] M. Casartelli, L. Dall’Asta, A. Vezzani, and P. Vivo, Dynamical invariants in the deterministic fixed-energy sandpile, European Physical Journal B 52 (2006), 91–105.
  • [4] L. Dall’Asta, Exact Solution of the One-Dimensional Deterministic Fixed-Energy Sandpile, Physical Review Letters 96 (2006), no. 5, 058003.
  • [5] Deepak Dhar, Self-organized critical state of sandpile automaton models, Phys. Rev. Lett. 64 (1990), no. 14, 1613–1616.
  • [6] P. Diaconis and W. Fulton, A growth model, a game, an algebra, Lagrange inversion, and characteristic classes, Rend. Sem. Mat. Univ. Politec. Torino 49 (1991), no. 1, 95–119 (1993), Commutative algebra and algebraic geometry, II (Italian) (Turin, 1990).
  • [7] Ronald Dickman, Leonardo T. Rolla, and Vladas Sidoravicius, Activated random walkers: facts, conjectures and challenges, J. Stat. Phys. 138 (2010), nos 1–3, 126–142.
  • [8] Kimmo Eriksson, Chip-firing games on mutating graphs, SIAM J. Discrete Math. 9 (1996), no. 1, 118–128.
  • [9] A. Fey, L. Levine, and D. B. Wilson, Driving Sandpiles to Criticality and Beyond, Physical Review Letters 104 (2010), no. 14, 145703.
  • [10] A. Fey and R. Meester, Critical densities in sandpile models with quenched or annealed disorder, ArXiv e-prints (2012).
  • [11] Marcelo Hilário, Frank Den Hollander, Vladas Sidoravicius, Renato Soares dos Santos, and Augusto Teixeira, Random walk on random walks., Electron. J. Probab. 20 (2015), 35 (English).
  • [12] Lionel Levine, Threshold state and a conjecture of Poghosyan, Poghosyan, Priezzhev and Ruelle, Communications in Mathematical Physics 335 (2015), no. 2, 1003–1017.
  • [13] Lionel Levine and Yuval Peres, Scaling limits for internal aggregation models with multiple sources, J. Anal. Math. 111 (2010), 151–219.
  • [14] Thomas M. Liggett, Interacting particle systems, Classics in Mathematics, Springer-Verlag, Berlin, 2005, Reprint of the 1985 original.
  • [15] S S Manna, Two-state model of self-organized criticality, Journal of Physics A: Mathematical and General 24 (1991), no. 7, L363.
  • [16] Colin McDiarmid, Concentration, Probabilistic methods for algorithmic discrete mathematics, Algorithms Combin., vol. 16, Springer, Berlin, 1998, pp. 195–248.
  • [17] R. Meester and C. Quant, Connections between ‘self-organised’ and ‘classical’ criticality, Markov Process. Related Fields 11 (2005), no. 2, 355–370.
  • [18] M. V. Men$'$shikov, Coincidence of critical points in percolation problems, Dokl. Akad. Nauk SSSR 288 (1986), no. 6, 1308–1311.
  • [19] Jason Miller and Yuval Peres, Uniformity of the uncovered set of random walk and cutoff for lamplighter chains, Ann. Probab. 40 (2012), no. 2, 535–577.
  • [20] M. A. Muñoz, R. Dickman, R. Pastor-Satorras, A. Vespignani, and S. Zapperi, Sandpiles and absorbing-state phase transitions: Recent results and open problems, American Institute of Physics Conference Series, American Institute of Physics Conference Series, vol. 574, June 2001, pp. 102–110.
  • [21] Yuval Peres, Alistair Sinclair, Perla Sousi, and Alexandre Stauffer, Mobile geometric graphs: detection, coverage and percolation, Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms (Philadelphia, PA), SIAM, 2011, pp. 412–428.
  • [22] Su. Poghosyan, V. Poghosyan, V. Priezzhev, and P. Ruelle, Numerical study of the correspondence between the dissipative and fixed-energy abelian sandpile models, Phys. Rev. E 84 (2011), 066119.
  • [23] Serguei Popov and Augusto Teixeira, Soft local times and decoupling of random interlacements, J. Eur. Math. Soc. (JEMS) 17 (2015), no. 10, 2545–2593 (English).
  • [24] James Gary Propp and David Bruce Wilson, How to get a perfectly random sample from a generic Markov chain and generate a random spanning tree of a directed graph, J. Algorithms 27 (1998), no. 2, 170–217, 7th Annual ACM-SIAM Symposium on Discrete Algorithms (Atlanta, GA, 1996).
  • [25] Frank Redig, Mathematical aspects of the abelian sandpile model, Mathematical statistical physics, Elsevier B. V., Amsterdam, 2006, pp. 657–729.
  • [26] Sidney I. Resnick, Extreme values, regular variation and point processes, Springer Series in Operations Research and Financial Engineering, Springer, New York, 2008, Reprint of the 1987 original.
  • [27] L. T. Rolla, Generalized Hammersley Process and Phase Transition for Activated Random Walk Models, Ph.D. thesis, 2008.
  • [28] L. T. Rolla and V. Sidoravicius, Absorbing-state phase transition for driven-dissipative stochastic dynamics on Z, Inventiones Mathematicae 188 (2012), 127–150.
  • [29] Yu. A. Rozanov, Markov random fields, Applications of Mathematics, Springer-Verlag, New York, 1982, Translated from Russian by Constance M. Elson.
  • [30] Eric Shellef, Nonfixation for activated random walks, ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010), 137–149.
  • [31] Didier Sornette, Critical phenomena in natural sciences, second ed., Springer Series in Synergetics, Springer-Verlag, Berlin, 2006, Chaos, fractals, selforganization and disorder: concepts and tools.
  • [32] A. Stauffer and L. Taggi, Critical density of activated random walks on $\mathbb{Z} ^d$ and general graphs, ArXiv e-prints (2015).