Electronic Journal of Probability

Asymptotics of heights in random trees constructed by aggregation

Bénédicte Haas

Full-text: Open access


To each sequence $(a_n)$ of positive real numbers we associate a growing sequence $(T_n)$ of continuous trees built recursively by gluing at step $n$ a segment of length $a_n$ on a uniform point of the pre–existing tree, starting from a segment $T_1$ of length $a_1$. Previous works [5, 10] on that model focus on the influence of $(a_n)$ on the compactness and Hausdorff dimension of the limiting tree. Here we consider the cases where the sequence $(a_n)$ is regularly varying with a non–negative index, so that the sequence $(T_n)$ explodes. We determine the asymptotics of the height of $T_n$ and of the subtrees of $T_n$ spanned by the root and $\ell $ points picked uniformly at random and independently in $T_n$, for all $\ell \in \mathbb N$.

Article information

Electron. J. Probab., Volume 22 (2017), paper no. 21, 25 pp.

Received: 23 June 2016
Accepted: 26 January 2017
First available in Project Euclid: 21 February 2017

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 05C05: Trees 60J05: Discrete-time Markov processes on general state spaces

random trees line–breaking uniform recursive trees

Creative Commons Attribution 4.0 International License.


Haas, Bénédicte. Asymptotics of heights in random trees constructed by aggregation. Electron. J. Probab. 22 (2017), paper no. 21, 25 pp. doi:10.1214/17-EJP31. https://projecteuclid.org/euclid.ejp/1487646307

Export citation


  • [1] L. Addario-Berry, N. Broutin, and C. Goldschmidt, Critical random graphs: limiting constructions and distributional properties, Electron. J. Probab. 15 (2010), no. 25, 741–775.
  • [2] D. Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28.
  • [3] D. Aldous, The continuum random tree. II. An overview, Stochastic analysis (Durham, 1990), London Math. Soc. Lecture Note Ser., vol. 167, Cambridge Univ. Press, Cambridge, 1991, pp. 23–70.
  • [4] D. Aldous, The continuum random tree III, Ann. Probab. 21 (1993), no. 1, 248–289.
  • [5] O. Amini, L. Devroye, S. Griffiths, and N. Olver, Explosion and linear transit times in infinite trees, To appear in Probab. Theory Related Fields. Preprint – arXiv:1411.4426.
  • [6] P. Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999.
  • [7] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1989.
  • [8] K. A. Borovkov and V. A. Vatutin, On the asymptotic behaviour of random recursive trees in random environments, Adv. in Appl. Probab. 38 (2006), no. 4, 1047–1070.
  • [9] N. Broutin and L. Devroye, Large deviations for the weighted height of an extended class of trees, Algorithmica 46 (2006), no. 3-4, 271–297.
  • [10] N. Curien and B. Haas, Random trees constructed by aggregation, To appear in the Annales de l’Institut Fourier. Preprint – arXiv:1411.4255.
  • [11] L. Devroye, Applications of the theory of records in the study of random trees, Acta Inform. 26 (1988), no. 1-2, 123–130.
  • [12] L. Devroye, O. Fawzi, and N. Fraiman, Depth properties of scaled attachment random recursive trees, Random Structures Algorithms 41 (2012), no. 1, 66–98.
  • [13] T. Duquesne and J. F. Le Gall, Random trees, Lévy processes and spatial branching processes, Astérisque (2002), no. 281, vi+147.
  • [14] C. Goldschmidt and B. Haas, A line-breaking construction of the stable trees, Electron. J. Probab. 20 (2015), no. 16, 1–24.
  • [15] J. F. Le Gall and Y. Le Jan, Branching processes in Lévy processes: the exploration process, Ann. Probab. 26 (1998), no. 1, 213–252.
  • [16] H. M. Mahmoud, Limiting distributions for path lengths in recursive trees, Probab. Engrg. Inform. Sci. 5 (1991), no. 1, 53–59.
  • [17] B. Pittel, Note on the heights of random recursive trees and random $m$-ary search trees, Random Structures Algorithms 5 (1994), no. 2, 337–347.
  • [18] F. Rembart and M. Winkel, Recursive construction of continuum random trees, Preprint – arXiv:1607.05323.
  • [19] N. Ross and Y. Wen, Scaling limits for some random trees constructed inhomogeneously, Preprint – arXiv:1611.01306.
  • [20] D. Sénizergues, Random gluing of metric spaces, In preparation.