Electronic Journal of Probability

Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation

Ivan Corwin and Mihai Nica

Full-text: Open access

Abstract

We consider directed polymer models involving multiple non-intersecting random walks moving through a space-time disordered environment in one spatial dimension. For a single random walk, Alberts, Khanin and Quastel proved that under intermediate disorder scaling (in which time and space are scaled diffusively, and the strength of the environment is scaled to zero in a critical manner) the polymer partition function converges to the solution to the stochastic heat equation with multiplicative white noise. In this paper we prove the analogous result for multiple non-intersecting random walks started and ended grouped together. The limiting object now is the multi-layer extension of the stochastic heat equation introduced by O’Connell and Warren.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 13, 49 pp.

Dates
Received: 18 January 2017
Accepted: 29 January 2017
First available in Project Euclid: 3 February 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1486090893

Digital Object Identifier
doi:10.1214/17-EJP32

Mathematical Reviews number (MathSciNet)
MR3613706

Zentralblatt MATH identifier
1357.60107

Subjects
Primary: 60F05: Central limit and other weak theorems 82C05: Classical dynamic and nonequilibrium statistical mechanics (general)

Keywords
directed polymers stochastic heat equation KPZ scaling limits partition function non-intersecting processes

Rights
Creative Commons Attribution 4.0 International License.

Citation

Corwin, Ivan; Nica, Mihai. Intermediate disorder directed polymers and the multi-layer extension of the stochastic heat equation. Electron. J. Probab. 22 (2017), paper no. 13, 49 pp. doi:10.1214/17-EJP32. https://projecteuclid.org/euclid.ejp/1486090893


Export citation

References

  • [1] T. Alberts, K. Khanin, and J. Quastel, The continuum directed random polymer, J. Stat. Phys. 154 (2013), 305–326.
  • [2] T. Alberts, K. Khanin, and J. Quastel, The intermediate disorder regime for directed polymers in dimension $1+1$, Ann. Probab. 42 (2014), 1212–1256.
  • [3] G. Barraquand and I. Corwin, Random-walk in beta-distributed random environment, Probab. Theo. Rel. Fields (2016), 1–60, advance online publication.
  • [4] L. Bertini and N. Cancrini, The stochastic heat equation: Feynman-Kac formula and intermittence, J. Stat. Phys. 78 (1995), 1377–1401.
  • [5] G. Blatter, M.V. Feigel’Man, V.B. Geshkenbein, A.I. Larkin, and V.M. Vinokur, Vortices in high-temperature superconductors, Rev. Mod. Phys. 66 (1994), 1125–1388.
  • [6] A. Borodin, I. Corwin, and D. Remenik, Log-gamma polymer free energy fluctuations via a Fredholm determinant identity, Comm. Math. Phys. 324 (2013), 215–232.
  • [7] A. Borodin, I. Corwin, and D. Remenik, Multiplicative functionals on ensembles of non-intersecting paths, Ann. Inst. H. Poincaré Probab. Statist. 51 (2015), 28–58.
  • [8] A. Borodin, A. Okounkov, and G. Olshanski, Asymptotics of Plancherel measures for symmetric groups, J. Amer. Math. Soc 13 (2000), 481–515.
  • [9] F. Caravenna, R. Sun, and N. Zygouras, Polynomial chaos and scaling limits of disordered systems, J. Eur. Math. Soc. 19 (2017), 1–65.
  • [10] I. Corwin, The Kardar–Parisi–Zhang equation and universality class, Random Matrices: Theory and Appl. 1 (2012), 1130001.
  • [11] I. Corwin and A. Hammond, Brownian Gibbs property for Airy line ensembles, Invent. Math. 195 (2013), 441–508.
  • [12] I. Corwin and A. Hammond, KPZ line ensemble, Probab. Theo. Rel. Fields 166 (2016), 67–185.
  • [13] I. Corwin, N. O’Connell, T. Seppäläinen, and N. Zygouras, Tropical combinatorics and Whittaker functions, Duke Math. J. 163 (2014), 513–563.
  • [14] I. Corwin, T. Seppäläinen, and H. Shen, The strict-weak lattice polymer, J. Stat. Phys. 160 (2015), 1027–1053.
  • [15] A. De Luca and P. Le Doussal, Crossing probability for directed polymers in random media, Phys. Rev. E 93 (2015), 040102.
  • [16] D. Denisov and V. Wachtel, Conditional limit theorems for ordered random walks, Electron. J. Probab 15 (2010), 292–322.
  • [17] V. Dotsenko, N-point free energy distribution function in one dimensional random directed polymers, Condens. Matter Phys. 17 (2014), 33003.
  • [18] R. Durrett, Probability: Theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, 2010.
  • [19] D. Fisher and D. Huse, Directed paths in a random potential, Phys. Rev. B 43 (1991), 10728–10742.
  • [20] P. Fitzsimmons, J. Pitman, and M. Yor, Seminar on stochastic processes, 1992, ch. Markovian Bridges: Construction, Palm Interpretation, and Splicing, pp. 101–134, Birkhäuser Boston, Boston, MA, 1993.
  • [21] D. Forster, D. Nelson, and M. Stephen, Large-distance and long-time properties of a randomly stirred fluid, Phys. Rev. A 16 (1977), 732–749.
  • [22] I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulae, Adv. in Math. 58 (1985), 300 – 321.
  • [23] V.E. Gorin, Nonintersecting paths and the Hahn orthogonal polynomial ensemble, Func. Analy. Appl. 42 (2008), 180–197 (English).
  • [24] O. Hallatschek, P. Hersen, S. Ramanathan, and D. Nelson, Genetic drift at expanding frontiers promotes gene segregation, Proc. Natl. Acad. Sci. 104 (2007), 19926–19930.
  • [25] T. Halpin-Healy and Y. Zhang, Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics, Phys. Rep. 254 (1995), 215–414.
  • [26] A. Hansen, E. Hinrichsen, and S. Roux, Roughness of crack interfaces, Phys. Rev. Lett. 66 (1991), 2476–2479.
  • [27] H. Holden, B. Øksendal, J. Ubøe, and T. Zhang, Stochastic Partial Differential Equations A Modeling, White Noise Functional Approach, Springer, 2010.
  • [28] D. Huse and C. Henley, Pinning and roughening of domain walls in Ising systems due to random impurities, Phys. Rev. Lett. 54 (1985), 2708–2711.
  • [29] T. Imamura, T. Sasamoto, and H. Spohn, On the equal time two-point distribution of the one-dimensional KPZ equation by replica, J. of Phys. A 46 (2013), 355002.
  • [30] S. Janson, Gaussian hilbert spaces, Cambridge Tracts in Mathematics, Cambridge University Press, 1997.
  • [31] K. Johansson, European congress of mathematics: Barcelona, July 10–14, 2000, volume I, ch. Random Growth and Random Matrices, pp. 445–456, Birkhäuser Basel, 2001.
  • [32] K. Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277–329.
  • [33] K. Johansson, Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. l’Institut Four. 55 (2005), 2129–2145 (eng).
  • [34] K. Johansson and E. Nordenstam, Eigenvalues of GUE minors., Electron. J. Probab. 11 (2006), 1342–1371 (eng).
  • [35] M. Kardar, Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities, Nucl. Phys. B 290 (1987), 582–602.
  • [36] S. Karlin and J. McGregor, Coincidence probabilities., Pacific J. Math. 9 (1959), 1141–1164.
  • [37] R. Koekoek and R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue., Tech. Report no. 98-17, Delft University of Technology, 1998.
  • [38] J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. I, Probab. Theo. Rel. Fields 32 (1975), 111–131.
  • [39] W. König, N. O’Connell, and S. Roch, Non-colliding random walks, tandem queues, and discrete orthogonal polynomial ensembles, Electron. J. Probab. 7 (2001), 1–24.
  • [40] C. Krattenthaler, A. Guttmann, and X. Viennot, Vicious walkers, friendly walkers and Young tableaux: II. With a wall, J. Phys. A. 33 (2000), 8835.
  • [41] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and P. Le Doussal, Domain wall creep in an Ising ultrathin magnetic film, Phys. Rev. Lett. 80 (1998), 849–852.
  • [42] C. McDiarmid, On the method of bounded differences, Surveys in Combinatorics, London Mathematical Society Lecture Note Series, Cambridge University Press, August 1989, pp. 148–188.
  • [43] V. Nguyen and N. Zygouras, Variants of geometric RSK, geometric PNG, and the multipoint distribution of the log-gamma polymer, Int. Math. Res. Not. (2016).
  • [44] E. Nordenstam, On the shuffling algorithm for domino tilings, Electron. J. Probab. 15 (2010), 75–95.
  • [45] N. O’Connell, Directed polymers and the quantum Toda lattice, Ann. Probab. 40 (2012), 437–458.
  • [46] N. O’Connell and J. Ortmann, Tracy-Widom asymptotics for a random polymer model with gamma-distributed weights, Electron. J. Probab. 20 (2015), 1–18.
  • [47] N. O’Connell and J. Warren, A multi-layer extension of the stochastic heat equation, Commun. Math. Phys. 341 (2015), 1–33.
  • [48] N. O’Connell and M. Yor, A representation for non-colliding random walks, Electron. Commun. Probab. 7 (2001), 1–12.
  • [49] M. Prähofer and H. Spohn, Scale invariance of the PNG droplet and the Airy process, J. Stat. Phys. 108 (2002), 1071–1106.
  • [50] S. Prolhac and H. Spohn, The one-dimensional KPZ equation and the Airy process, J. Stat. Mech. 2011 (2011), no. 03, P03020.
  • [51] J. Quastel, Introduction to KPZ, Cur. Dev. Math. 2011 (2011), 125–194.
  • [52] T. Seppäläinen, Scaling for a one-dimensional directed polymer with boundary conditions, Ann. Probab. 40 (2012), 19–73.
  • [53] C. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), 151–174.
  • [54] L. Tsai, Infinite dimensional stochastic differential equations for Dysons model, Probab. Theo. Rel. Fields 166 (2016), 810–850.
  • [55] P. Vallois, The range of a simple random walk on Z, Adv. Appl. Probab. 28 (1996), 1014–1033.
  • [56] J. Warren, Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), 573–590.