Electronic Journal of Probability

A central limit theorem for the spatial $\Lambda $-Fleming-Viot process with selection

Raphaël Forien and Sarah Penington

Full-text: Open access

Abstract

We study the evolution of gene frequencies in a population living in $\mathbb{R} ^d$, modelled by the spatial $\Lambda $-Fleming-Viot process with natural selection. We suppose that the population is divided into two genetic types, $a$ and $A$, and consider the proportion of the population which is of type $a$ at each spatial location. If we let both the selection intensity and the fraction of individuals replaced during reproduction events tend to zero, the process can be rescaled so as to converge to the solution to a reaction-diffusion equation (typically the Fisher-KPP equation). We show that the rescaled fluctuations converge in distribution to the solution to a linear stochastic partial differential equation. Depending on whether offspring dispersal is only local or if large scale extinction-recolonization events are allowed to take place, the limiting equation is either the stochastic heat equation with a linear drift term driven by space-time white noise or the corresponding fractional heat equation driven by a coloured noise which is white in time. If individuals are diploid (i.e. either $AA$, $Aa$ or $aa$) and if natural selection favours heterozygous ($Aa$) individuals, a stable intermediate gene frequency is maintained in the population. We give estimates for the asymptotic effect of random fluctuations around the equilibrium frequency on the local average fitness in the population. In particular, we find that the size of this effect - known as the drift load - depends crucially on the dimension $d$ of the space in which the population evolves, and is reduced relative to the case without spatial structure.

Article information

Source
Electron. J. Probab., Volume 22 (2017), paper no. 5, 68 pp.

Dates
Received: 9 March 2016
Accepted: 16 December 2016
First available in Project Euclid: 17 January 2017

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1484622022

Digital Object Identifier
doi:10.1214/16-EJP20

Mathematical Reviews number (MathSciNet)
MR3613698

Zentralblatt MATH identifier
1357.60024

Subjects
Primary: 60G57: Random measures 60F05: Central limit and other weak theorems 60J25: Continuous-time Markov processes on general state spaces 92D10: Genetics {For genetic algebras, see 17D92}
Secondary: 60G15: Gaussian processes

Keywords
generalised Fleming-Viot process population genetics limit theorems Fisher-KPP equation stochastic heat equation

Rights
Creative Commons Attribution 4.0 International License.

Citation

Forien, Raphaël; Penington, Sarah. A central limit theorem for the spatial $\Lambda $-Fleming-Viot process with selection. Electron. J. Probab. 22 (2017), paper no. 5, 68 pp. doi:10.1214/16-EJP20. https://projecteuclid.org/euclid.ejp/1484622022


Export citation

References

  • [AK15] Franz Achleitner and Christian Kuehn. Traveling waves for a bistable equation with nonlocal diffusion. Advances in Differential Equations, 20(9/10):887–936, 2015.
  • [Ald78] David Aldous. Stopping times and tightness. The Annals of Probability, 6(2):335–340, 1978.
  • [BEK06] Hermine Biermé, Anne Estrade, and Ingemar Kaj. About scaling behavior of random balls models. In Proceed. 6th Int. Conf. on Stereology, Spatial Statistics and Stochastic Geometry, Prague, 2006.
  • [BEK10] Hermine Biermé, Anne Estrade, and Ingemar Kaj. Self-similar Random Fields and Rescaled Random Balls Models. Journal of Theoretical Probability, 23(4):1110–1141, 2010.
  • [BEV10] Nick H. Barton, Alison M. Etheridge, and Amandine Véber. A new model for evolution in a spatial continuum. Electronic Journal of Probability, 15(7): 162–216, 2010.
  • [BEV13a] N. H. Barton, A. M. Etheridge, and A. Véber. Modeling evolution in a spatial continuum. Journal of Statistical Mechanics: Theory and Experiment, 2013(01):P01002, 2013.
  • [BEV13b] N. Berestycki, A. M. Etheridge, and A. Véber. Large scale behaviour of the spatial Lambda-Fleming–Viot process. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 49(2):374–401, 2013.
  • [BLG03] Jean Bertoin and Jean-François Le Gall. Stochastic flows associated to coalescent processes. Probability Theory and Related Fields, 126(2):261–288, 2003.
  • [Chm13] Adam Chmaj. Existence of traveling waves in the fractional bistable equation. Archiv der Mathematik, 100(5):473–480, 2013.
  • [DMFL86] A. De Masi, P. A. Ferrari, and J. L. Lebowitz. Reaction-diffusion equations for interacting particle systems. Journal of Statistical Physics, 44(3-4):589–644, 1986.
  • [EFPS15] Alison Etheridge, Nic Freeman, Sarah Penington, and Daniel Straulino. Branching Brownian motion and Selection in the Spatial Lambda-Fleming-Viot Process. arXiv preprint arXiv:1512.03766, 2015.
  • [EFS15] Alison Etheridge, Nic Freeman, and Daniel Straulino. The Brownian Net and Selection in the Spatial Lambda-Fleming-Viot Process. arXiv preprint arXiv:1506.01158, 2015.
  • [EK86] Stewart N. Ethier and Thomas G. Kurtz. Markov processes: characterization and convergence John Wiley & Sons, Inc., New York, 1986.
  • [Eth08] Alison M. Etheridge. Drift, draft and structure: some mathematical models of evolution. In Stochastic models in biological sciences, volume 80 of Banach Center Publ., pages 121–144. Polish Acad. Sci. Inst. Math., Warsaw, 2008.
  • [Eth11] Alison Etheridge. Some mathematical models from population genetics, volume 2012 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. Lectures from the 39th Probability Summer School held in Saint-Flour, 2009, Ecole d’Eté de Probabilités de Saint-Flour.
  • [EVY14] Alison Etheridge, Amandine Veber, and Feng Yu. Rescaling limits of the spatial Lambda-Fleming-Viot process with selection. arXiv preprint arXiv:1406.5884, 2014.
  • [Fel51] William Feller. Diffusion processes in genetics. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pages 227–246. University of California Press, Berkeley and Los Angeles, 1951.
  • [Fis37] Ronald Aylmer Fisher. The wave of advance of advantageous genes. Annals of Eugenics, 7(4):355–369, 1937.
  • [JS03] Jean Jacod and Albert N. Shiryaev. Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2003.
  • [Kim53] M. Kimura. Stepping-stone model of population. Annual Report of the National Institute of Genetics, 3:62–63, 1953.
  • [Kur71] Thomas G. Kurtz. Limit theorems for sequences of jump Markov processes approximating ordinary differential processes. Journal of Applied Probability, 8(2):344–356, 1971.
  • [Mal48] Gustave Malécot. Les Mathématiques de l’Hérédité. Masson et Cie., Paris, 1948.
  • [MT95] Carl Müeller and Roger Tribe. Stochastic pde’s arising from the long range contact and long range voter processes. Probability theory and related fields, 102(4):519–545, 1995.
  • [Nor74a] M. Frank Norman. A central limit theorem for Markov processes that move by small steps. The Annals of Probability, 2:1065–1074, 1974.
  • [Nor74b] M. Frank Norman. Markovian learning processes. SIAM Review, 16(2):143–162, 1974.
  • [Nor75a] M. Frank Norman. Approximation of stochastic processes by Gaussian diffusions, and applications to Wright-Fisher genetic models. SIAM Journal on Applied Mathematics, 29(2):225–242, 1975. Special issue on mathematics and the social and biological sciences.
  • [Nor75b] M. Frank Norman. Limit theorems for stationary distributions. Advances in Applied Probability, 7(3):561–575, 1975.
  • [Nor77] M. Frank Norman. Ergodicity of diffusion and temporal uniformity of diffusion approximation. Journal of Applied Probability, 14(2):399–404, 1977.
  • [Rob70] Alan Robertson. The reduction in fitness from genetic drift at heterotic loci in small populations. Genetical research, 15(02):257–259, 1970.
  • [SKM93] Stefan G. Samko, Anatoly A. Kilbas, and Oleg I. Marichev. Fractional integrals and derivatives. Gordon and Breach Science Publishers, Yverdon, 1993.
  • [VW15] Amandine Veber and Anton Wakolbinger. The spatial Lambda-Fleming–Viot process: An event-based construction and a lookdown representation. Annales de l’Institut Henri Poincaré, Probabilités et Statistiques, 51(2):570–598, 2015.
  • [Wal86] John B. Walsh. An introduction to stochastic partial differential equations. In Ecole d’été de probabilités de Saint-Flour, XIV—1984, volume 1180 of Lecture Notes in Math., pages 265–439. Springer, Berlin, 1986.
  • [Wri43] Sewall Wright. Isolation by distance. Genetics, 28(2):114, 1943.