Abstract
We provide sharp lower and upper bounds for the Hausdorff dimension of the intersection of a typical random covering set with a fixed analytic set both in Ahlfors regular metric spaces and in the $d$-dimensional torus. In metric spaces, we consider covering sets generated by balls and, in tori, we deal with general analytic generating sets.
Citation
Esa Järvenpää. Maarit Järvenpää. Henna Koivusalo. Bing Li. Ville Suomala. Yimin Xiao. "Hitting probabilities of random covering sets in tori and metric spaces." Electron. J. Probab. 22 1 - 18, 2017. https://doi.org/10.1214/16-EJP4658
Information