Electronic Journal of Probability

Continuum space limit of the genealogies of interacting Fleming-Viot processes on $\mathbb{Z}$

Andreas Greven, Rongfeng Sun, and Anita Winter

Full-text: Open access


We study the evolution of genealogies of a population of individuals, whose type frequencies result in an interacting Fleming-Viot process on $\mathbb{Z}$. We construct and analyze the genealogical structure of the population in this genealogy-valued Fleming-Viot process as a marked metric measure space, with each individual carrying its spatial location as a mark. We then show that its time evolution converges to that of the genealogy of a continuum-sites stepping stone model on $\mathbb{R}$, if space and time are scaled diffusively. We construct the genealogies of the continuum-sites stepping stone model as functionals of the Brownian web, and furthermore, we show that its evolution solves a martingale problem. The generator for the continuum-sites stepping stone model has a singular feature: at each time, the resampling of genealogies only affects a set of individuals of measure $0$. Along the way, we prove some negative correlation inequalities for coalescing Brownian motions, as well as extend the theory of marked metric measure spaces (developed recently by Depperschmidt, Greven and Pfaffelhuber [DGP11]) from the case of probability measures to measures that are finite on bounded sets.

Article information

Electron. J. Probab., Volume 21 (2016), paper no. 58, 64 pp.

Received: 28 August 2015
Accepted: 12 September 2016
First available in Project Euclid: 30 September 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 60J65: Brownian motion [See also 58J65] 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx] 92D25: Population dynamics (general)

Brownian web continuum-sites stepping stone model evolving genealogies interacting Fleming-Viot process marked metric measure space martingale problems negative correlation inequalities spatial continuum limit

Creative Commons Attribution 4.0 International License.


Greven, Andreas; Sun, Rongfeng; Winter, Anita. Continuum space limit of the genealogies of interacting Fleming-Viot processes on $\mathbb{Z}$. Electron. J. Probab. 21 (2016), paper no. 58, 64 pp. doi:10.1214/16-EJP4514. https://projecteuclid.org/euclid.ejp/1475266506

Export citation


  • [Ald93] D. Aldous. The continuum random tree III. Ann. Probab., 21:248–289, 1993.
  • [ALW16] S. Athreya, W. Löhr, and A. Winter. The gap between Gromov-vague and Gromov-Hausdorff-vague topology. Stoch Processes Appl., 126(9):2527–2553, 2016.
  • [Arr79] R. Arratia. Coalescing Brownian motions on the line. PhD thesis, University of Wisconsin, 1979.
  • [Arr81] R. Arratia. Coalescing Brownian motions and the voter model on $\mathbb{Z} $. Unpublished partial manuscript, 1981.
  • [AS11] S. Athreya and R. Sun. One-dimensional Voter model interface revisited. Electron. Commun. Probab., 16:792–800, 2011.
  • [Bil89] P. Billingsley. Convergence of Probability Measures. John Wiley & Sons, 2nd edition, 1989.
  • [CG86] J.T. Cox and D. Griffeath. Diffusive clustering in the two dimensional voter model. Ann. Probab., 14:347–370, 1986.
  • [Daw77] D. A. Dawson. The critical measure diffusion process. Z. Wahrscheinlichkeitstheorie verw. Gebiete, 40:125–145, 1977.
  • [Daw93] D.A. Dawson. Measure-valued Markov processes, volume 1541. Springer-Verlag, 1993.
  • [DEF$^{+}$00] P. Donnelly, S.N. Evans, K. Fleischmann, T.G. Kurtz, and X. Zhou. Continuum-sites stepping-stone models, coalescing exchangeable partitions and random trees. Ann. Probab., 28:1063–1110, 2000.
  • [DEF$^{+}$02a] D. A. Dawson, A.M. Etheridge, K. Fleischmann, E.A. Perkins L. Mytnik, and J. Xiong. Mutually catalytic branching in the plane: Infinite measure states. Electron. Commun. Probab., 7(15):1–61, 2002.
  • [DEF$^{+}$02b] D. A. Dawson, A.M. Etheridge, K. Fleischmann, L. Mytnik, E.A. Perkins, and J. Xiong. Mutually catalytic branching in the plane: Finite measure states. Ann. of Probab., 30:1681–1762, 2002.
  • [DGP11] A. Depperschmidt, A. Greven, and P. Pfaffelhuber. Marked metric measure spaces. Electron. Commun. Probab., 16:174–188, 2011.
  • [DGP12] A. Depperschmidt, A. Greven, and P. Pfaffelhuber. Tree-valued Fleming-Viot dynamics with mutation and selection. Ann. Appl. Probab., 22:2560–2615, 2012.
  • [DGV95] D.A. Dawson, A. Greven, and J. Vaillancourt. Equilibria and quasi-equilibria for infinite systems of Fleming-Viot processes. Trans. Amer. Math. Soc., 347:2277–2360, 1995.
  • [DP91] D.A. Dawson and E. Perkins. Historical processes. Mem. Amer. Math. Soc., 93(454), 1991.
  • [DP98] D. A. Dawson and E. Perkins. Longtime behavior and coexistence in a mutually catalytic branching model. Ann. Probab., 26(3):1088–1138, 1998.
  • [DVJ03] D.J. Daley and D. Vere-Jones. An introduction to the theory of point processes. Vol. I. Elementary theory and methods. Springer, New York, 2nd edition, 2003.
  • [EF96] S. Evans and K. Fleischmann. Cluster formation in a stepping stone model with continuous, hierarchically structured sites. Ann. Probab., 24:1926–1952, 1996.
  • [EK86] S.N. Ethier and T. Kurtz. Markov processes: characterization and convergence. John Wiley, New York, 1986.
  • [EPW06] S.N. Evans, J. Pitman, and A. Winter. Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Relat. Fields, 134:81–126, 2006.
  • [Eva97] S. Evans. Coalescing markov labelled partitions and a continuous sites genetics model with infinitely many types. Ann. Inst. H. Poincaré Probab. Statist., 33:339–358, 1997.
  • [FG94] K. Fleischmann and A. Greven. Diffusive clustering in an infinite system of hierarchically interacting Fisher-Wright diffusions. Probab. Theory Related Fields, 98:517–566, 1994.
  • [FG96] K. Fleischmann and A. Greven. Time–space analysis of the cluster formation in interacting diffusions. Electron. J. Probab., 1:1–46, 1996.
  • [FINR04] L.R.G. Fontes, M. Isopi, C.M. Newman, and K. Ravishankar. The Brownian web: characterization and convergence. Ann. Probab., 32:2857–2883, 2004.
  • [FINR06] L.R.G. Fontes, M. Isopi, C.M. Newman, and K. Ravishankar. Coarsening, nucleation, and the marked Brownian web. Ann. Inst. H. Poincaré Probab. Stat., 42:37–60, 2006.
  • [GJ98] J.F. Le Gall and Y. Le Jan. Branching processes in Lévy processes: Laplace functionals of snakes and superprocesses. Ann. Probab., 26:1407–1432, 1998.
  • [GKW] A. Greven, A. Klimovsky, and A. Winter. Evolving genealogies of spatial $\Lambda $-Fleming-Viot processes with mutation. in preparation.
  • [GLW05] A. Greven, V. Limic, and A. Winter. Representation theorems for interacting Moran models, interacting Fisher–Wright diffusions and applications. Electron. J. Probab., 10:1286–1358, 2005.
  • [GM] A. Greven and C. Mukherjee. Genealogies of spatial logistic branching models. in preparation.
  • [GPW09] A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random metric measure spaces (the Lambda-coalescent measure tree). Probab. Theory Related Fields, 145:285–322, 2009.
  • [GPW13] A. Greven, P. Pfaffelhuber, and A. Winter. Tree-valued resampling dynamics: martingale problems and applications. Probab. Theory Related Fields, 155(3–4):789–838, 2013.
  • [KL15] S. Kliem and W. Löhr. Existence of mark functions in marked metric measure spaces. Electronic Journal of Probability, 20(72):1–24, 2015.
  • [Kle00] A. Klenke. Diffusive clustering of interacting Brownian motions on $\mathbb{Z}^2$. Stochastic Process. Appl., 89:261–268, 2000.
  • [KM59] S. Karlin and J. McGregor. Coincidence probabilities. Pacific J. Math., 9:1141–1164, 1959.
  • [KS88] N. Konno and T. Shiga. Stochastic differential equations for some measure-valued diffusions. Probab. Theory Related Fields, 79:201–225, 1988.
  • [Lig85] T.M. Liggett. Interacting Particle Systems. Springer, New York, 1985. Reprint of the 1985 original. Classics in Mathematics. Springer-Verlag, Berlin, 2005.
  • [MRTZ06] R. Munasinghe, R. Rajesh, R. Tribe, and O. Zaboronski. Multi-scaling of the $n$-point density function for coalescing Brownian motions. Commun. Math. Phys., 268:717–725, 2006.
  • [NRS05] C. M. Newman, K. Ravishankar, and R. Sun. Convergence of coalescing nonsimple random walks to the Brownian web. Electron. J. Probab., 10:21–60, 2005.
  • [Rei00] D. Reimer. Proof of the van den Berg-Kesten conjecture. Combin. Probab. Comput., 9:27–32, 2000.
  • [Sei14] P. Seidel. The historical process of the spatial Moran model with selection and mutation. Universität Erlangen-Nürnberg, Erlangen, 2014. Dissertation.
  • [Spi76] F. Spitzer. Principles of Random Walk. Springer-Verlag, 2nd edition, 1976.
  • [SS08] R. Sun and J.M. Swart. The Brownian net. Ann. Probab., 36:1153–1208, 2008.
  • [SSS15] E Schertzer, R. Sun, and J.M. Swart. The Brownian web, the Brownian net, and their universality. arXiv:1506.00724, 2015.
  • [TW98] B. Toth and W. Werner. The true self-repelling motion. Probab. Theory Related Fields, 111:375–452, 1998.
  • [vdBK02] J. van den Berg and H. Kesten. Randomly coalescing random walk in dimension $\geq 3$. In and out of equilibrium. Progr. Probab., 51:1–45, 2002.
  • [Win02] A. Winter. Multiple scale analysis of spatial branching processes under the palm distribution. Electron. J. Probab., 7:1–74, 2002.
  • [Zho03] X. Zhou. Clustering behavior of a continuous-sites stepping-stone model with Brownian migration. Electron. J. Probab., 8:1–15, 2003.