Open Access
2016 Equivalence of zero entropy and the Liouville property for stationary random graphs
Matías Carrasco Piaggio, Pablo Lessa
Electron. J. Probab. 21: 1-24 (2016). DOI: 10.1214/16-EJP4650

Abstract

We prove that any rooted stationary random graph satisfying a growth condition and having positive entropy almost surely admits an infinite dimensional space of bounded harmonic functions. Applications to random infinite planar triangulations and Delaunay graphs are given.

Citation

Download Citation

Matías Carrasco Piaggio. Pablo Lessa. "Equivalence of zero entropy and the Liouville property for stationary random graphs." Electron. J. Probab. 21 1 - 24, 2016. https://doi.org/10.1214/16-EJP4650

Information

Received: 20 October 2015; Accepted: 1 August 2016; Published: 2016
First available in Project Euclid: 6 September 2016

zbMATH: 1346.05276
MathSciNet: MR3546392
Digital Object Identifier: 10.1214/16-EJP4650

Subjects:
Primary: 05C80 , 28D20 , 60B05

Keywords: Delaunay graphs , Liouville property , random triangulations , stationary graphs

Vol.21 • 2016
Back to Top