Electronic Journal of Probability

Gaussian Scaling for the Critical Spread-out Contact Process above the Upper Critical Dimension

Remco van der Hofstad and Akira Sakai

Full-text: Open access

Abstract

We consider the critical spread-out contact process in $Z^d$ with $d\geq1$, whose infection range is denoted by $L\geq1$. The two-point function $\tau_t(x)$ is the probability that $x\in Z^d$ is infected at time $t$ by the infected individual located at the origin $o\in Z^d$ at time 0. We prove Gaussian behaviour for the two-point function with $L\geq L_0$ for some finite $L_0=L_0(d)$ for $d \gt 4$. When $d\leq4$, we also perform a local mean-field limit to obtain Gaussian behaviour for $\tau_{ tT}(x)$ with $t \gt 0$ fixed and $T\to\infty$ when the infection range depends on $T$ in such a way that $L_{T}=LT^b$ for any $b \gt (4-d)/2d$.

The proof is based on the lace expansion and an adaptation of the inductive approach applied to the discretized contact process. We prove the existence of several critical exponents and show that they take on their respective mean-field values. The results in this paper provide crucial ingredients to prove convergence of the finite-dimensional distributions for the contact process towards those for the canonical measure of super-Brownian motion, which we defer to a sequel of this paper.

The results in this paper also apply to oriented percolation, for which we reprove some of the results in van der Hofstad and Slade (2003) and extend the results to the local mean-field setting described above when $d\leq4$.

Article information

Source
Electron. J. Probab., Volume 9 (2004), paper no. 24, 710-769.

Dates
Accepted: 30 August 2004
First available in Project Euclid: 6 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465229710

Digital Object Identifier
doi:10.1214/EJP.v9-224

Mathematical Reviews number (MathSciNet)
MR2110017

Zentralblatt MATH identifier
1077.60076

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

van der Hofstad, Remco; Sakai, Akira. Gaussian Scaling for the Critical Spread-out Contact Process above the Upper Critical Dimension. Electron. J. Probab. 9 (2004), paper no. 24, 710--769. doi:10.1214/EJP.v9-224. https://projecteuclid.org/euclid.ejp/1465229710


Export citation

References

  • Aizenman, Michael; Newman, Charles M. Tree graph inequalities and critical behavior in percolation models. J. Statist. Phys. 36 (1984), no. 1-2, 107–143.
  • Barsky, D. J.; Aizenman, M. Percolation critical exponents under the triangle condition. Ann. Probab. 19 (1991), no. 4, 1520–1536.
  • Barsky, David J.; Wu, C. Chris. Critical exponents for the contact process under the triangle condition. J. Statist. Phys. 91 (1998), no. 1-2, 95–124.
  • Bezuidenhout, Carol; Grimmett, Geoffrey. Exponential decay for subcritical contact and percolation processes. Ann. Probab. 19 (1991), no. 3, 984–1009.
  • E. Bolthausen and C. Ritzmann. Strong pointwise estimates for the weakly self-avoiding walk. To appear in Ann. Probab.
  • Borgs, C.; Chayes, J. T.; Randall, D. The van den Berg-Kesten-Reimer inequality: a review. Perplexing problems in probability, 159–173, Progr. Probab., 44, Birkhäuser Boston, Boston, MA, 1999.
  • Brydges, David; Spencer, Thomas. Self-avoiding walk in $5$ or more dimensions. Comm. Math. Phys. 97 (1985), no. 1-2, 125–148.
  • Durrett, Richard; Perkins, Edwin A. Rescaled contact processes converge to super-Brownian motion in two or more dimensions. Probab. Theory Related Fields 114 (1999), no. 3, 309–399.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6.
  • Grimmett, Geoffrey; Hiemer, Philipp. Directed percolation and random walk. In and out of equilibrium (Mambucaba, 2000), 273–297, Progr. Probab., 51, Birkhäuser Boston, Boston, MA, 2002.
  • Hara, Takashi; Slade, Gordon. Mean-field critical behaviour for percolation in high dimensions. Comm. Math. Phys. 128 (1990), no. 2, 333–391.
  • Hara, Takashi; Slade, Gordon. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147 (1992), no. 1, 101–136.
  • Hara, Takashi; Slade, Gordon. The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents. J. Statist. Phys. 99 (2000), no. 5-6, 1075–1168.
  • Hara, Takashi; Slade, Gordon. The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion. Probabilistic techniques in equilibrium and nonequilibrium statistical physics. J. Math. Phys. 41 (2000), no. 3, 1244–1293.
  • van der Hofstad, Remco; den Hollander, Frank; Slade, Gordon. A new inductive approach to the lace expansion for self-avoiding walks. Probab. Theory Related Fields 111 (1998), no. 2, 253–286.
  • van der Hofstad, Remco; den Hollander, Frank; Slade, Gordon. Construction of the incipient infinite cluster for spread-out oriented percolation above $4+1$ dimensions. Comm. Math. Phys. 231 (2002), no. 3, 435–461.
  • van der Hofstad, Remco; Sakai, Akira. Critical points for spread-out self-avoiding walk, percolation and the contact process above the upper critical dimensions. Probab. Theory Related Fields 132 (2005), no. 3, 438–470.
  • R. van der Hofstad and A. Sakai. Convergence of the critical finite-range contact process to super-Brownian motion above 4 spatial dimensions. In preparation.
  • van der Hofstad, Remco; Slade, Gordon. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122 (2002), no. 3, 389–430.
  • van der Hofstad, Remco; Slade, Gordon. Convergence of critical oriented percolation to super-Brownian motion above $4+1$ dimensions. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 3, 413–485.
  • van der Hofstad, Remco; Slade, Gordon. The lace expansion on a tree with application to networks of self-avoiding walks. Adv. in Appl. Math. 30 (2003), no. 3, 471–528.
  • Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1
  • Madras, Neal; Slade, Gordon. The self-avoiding walk. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1993. xiv+425 pp. ISBN: 0-8176-3589-0
  • Nguyen, Bao Gia; Yang, Wei-Shih. Triangle condition for oriented percolation in high dimensions. Ann. Probab. 21 (1993), no. 4, 1809–1844.
  • Nguyen, Bao Gia; Yang, Wei-Shih. Gaussian limit for critical oriented percolation in high dimensions. J. Statist. Phys. 78 (1995), no. 3-4, 841–876.
  • A. Sakai. Analyses of the critical behavior for the contact process based on a percolation structure. Ph.D. thesis (2000).
  • Sakai, Akira. Mean-field critical behavior for the contact process. J. Statist. Phys. 104 (2001), no. 1-2, 111–143.
  • Sakai, Akira. Hyperscaling inequalities for the contact process and oriented percolation. J. Statist. Phys. 106 (2002), no. 1-2, 201–211.
  • Schonmann, Roberto H. The triangle condition for contact processes on homogeneous trees. J. Statist. Phys. 90 (1998), no. 5-6, 1429–1440.
  • Slade, Gordon. The diffusion of self-avoiding random walk in high dimensions. Comm. Math. Phys. 110 (1987), no. 4, 661–683.
  • Slade, Gordon. Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A 21 (1988), no. 7, L417–L420.
  • Slade, Gordon. The lace expansion and the upper critical dimension for percolation. Mathematics of random media (Blacksburg, VA, 1989), 53–63, Lectures in Appl. Math., 27, Amer. Math. Soc., Providence, RI, 1991.
  • Slade, G. The lace expansion and its applications. Lectures from the 34th Summer School on Probability Theory held in Saint-Flour, July 6-24, 2004. Edited and with a foreword by Jean Picard. Lecture Notes in Mathematics, 1879. Springer-Verlag, Berlin, 2006. xiv+228 pp. ISBN: 978-3-540-31189-8; 3-540-31189-0.
  • Wu, C. Chris. The contact process on a tree: behavior near the first phase transition. Stochastic Process. Appl. 57 (1995), no. 1, 99–112.