Electronic Journal of Probability

On the scaling limits of Galton-Watson processes in varying environments

Vincent Bansaye and Florian Simatos

Full-text: Open access


;We establish a general sufficient condition for a sequence of Galton-Watson branching processes in varying environments to converge weakly. This condition extends previous results by allowing offspring distributions to have infinite variance. Our assumptions are stated in terms of pointwise convergence of a triplet of two real-valued functions and a measure. The limiting process is characterized by a backwards integro-differential equation satisfied by its Laplace exponent, which generalizes the branching equation satisfied by continuous state branching processes. Several examples are discussed, namely branching processes in random environment, Feller diffusion in varying environments and branching processes with catastrophes.

Article information

Electron. J. Probab., Volume 20 (2015), paper no. 75, 36 pp.

Accepted: 3 July 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60K37: Processes in random environments

branching process varying environment scaling limit

This work is licensed under aCreative Commons Attribution 3.0 License.


Bansaye, Vincent; Simatos, Florian. On the scaling limits of Galton-Watson processes in varying environments. Electron. J. Probab. 20 (2015), paper no. 75, 36 pp. doi:10.1214/EJP.v20-3812. https://projecteuclid.org/euclid.ejp/1465067181

Export citation


  • Afanasyev, V. I. The invariance principle for a critical branching process in a random environment attaining a high level. (Russian) Teor. Veroyatn. Primen. 54 (2009), no. 1, 3–17; translation in Theory Probab. Appl. 54 (2010), no. 1, 1–13
  • Afanasyev, V. I.; Geiger, J.; Kersting, G.; Vatutin, V. A. Criticality for branching processes in random environment. Ann. Probab. 33 (2005), no. 2, 645–673.
  • Athreya, Krishna B.; Karlin, Samuel. On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42 (1971), 1499–1520.
  • Athreya, Krishna B.; Karlin, Samuel. Branching processes with random environments. II. Limit theorems. Ann. Math. Statist. 42 (1971), 1843–1858.
  • Bansaye, V.; Berestycki, J. Large deviations for branching processes in random environment. Markov Process. Related Fields 15 (2009), no. 4, 493–524.
  • Vincent Bansaye, Juan Carlos Pardo Millan, and Charline Smadi. On the extinction of Continuous State Branching Processes with catastrophes. arXiv:1301.6093.
  • V. Bansaye and F. Simatos. A sufficient condition for the tightness of time-inhomogeneous Markov processes. arXiv:1409.5215.
  • Bertoin, Jean. Lévy processes. Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9
  • Birkner, Matthias; Geiger, Jochen; Kersting, Götz. Branching processes in random environment-a view on critical and subcritical cases. Interacting stochastic systems, 269–291, Springer, Berlin, 2005.
  • Böinghoff, C.; Dyakonova, E. E.; Kersting, G.; Vatutin, V. A. Branching processes in random environment which extinct at a given moment. Markov Process. Related Fields 16 (2010), no. 2, 329–350.
  • Böinghoff, C.; Hutzenthaler, M. Branching diffusions in random environment. Markov Process. Related Fields 18 (2012), no. 2, 269–310.
  • Borovkov, K. A note on diffusion-type approximation to branching processes in random environments. Teor. Veroyatnost. i Primenen. 47 (2002), no. 1, 183–188; translation in Theory Probab. Appl. 47 (2003), no. 1, 132–138
  • Caballero, Ma. Emilia; Lambert, Amaury; Uribe Bravo, Gerónimo. Proof(s) of the Lamperti representation of continuous-state branching processes. Probab. Surv. 6 (2009), 62–89.
  • Dynkin, E. B. Branching particle systems and superprocesses. Ann. Probab. 19 (1991), no. 3, 1157–1194.
  • Dynkin, E. B. Superprocesses and partial differential equations. Ann. Probab. 21 (1993), no. 3, 1185–1262.
  • El Karoui, Nicole; Roelly, Sylvie. Propriétés de martingales, explosion et représentation de Lévy-Khintchine d'une classe de processus de branchement à valeurs mesures. (French) [Martingale properties, explosion and Levy-Khinchin representation of a class of measure-valued branching processes] Stochastic Process. Appl. 38 (1991), no. 2, 239–266.
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8
  • Feller, William. Diffusion processes in genetics. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 227–246. University of California Press, Berkeley and Los Angeles, 1951.
  • H. Föllmer. Calcul d'Itô sans probabilités. In phSeminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), volume 850 of phLecture Notes in Math., pages 143–150. Springer, Berlin, 1981.
  • Geiger, Jochen; Kersting, Götz; Vatutin, Vladimir A. Limit theorems for subcritical branching processes in random environment. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003), no. 4, 593–620.
  • Gnedenko, B. V.; Kolmogorov, A. N. Limit distributions for sums of independent random variables. Translated from the Russian, annotated, and revised by K. L. Chung. With appendices by J. L. Doob and P. L. Hsu. Revised edition Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills., Ont. 1968 ix+293 pp.
  • Grey, D. R. Asymptotic behaviour of continuous time, continuous state-space branching processes. J. Appl. Probability 11 (1974), 669–677.
  • Grimvall, Anders. On the convergence of sequences of branching processes. Ann. Probability 2 (1974), 1027–1045.
  • Guivarc'h, Yves; Liu, Quansheng. Propriétés asymptotiques des processus de branchement en environnement aléatoire. (French) [Asymptotic properties of branching processes in a random environment] C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 4, 339–344.
  • Helland, Inge S. Continuity of a class of random time transformations. Stochastic Processes Appl. 7 (1978), no. 1, 79–99.
  • Helland, Inge S. Minimal conditions for weak convergence to a diffusion process on the line. Ann. Probab. 9 (1981), no. 3, 429–452.
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3
  • Jirina, Miloslav. Stochastic branching processes with continuous state space. Czechoslovak Math. J. 8 (83) 1958 292–313.
  • Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2
  • Niels Keiding. Extinction and exponential growth in random environments. phTheoretical Population Biology, 8(1):49–63, 1975.
  • Kendall, David G. On the generalized "birth-and-death" process. Ann. Math. Statistics 19, (1948). 1–15.
  • A. N. Kolmogorov. The transition of branching processes into diffusion processes and associated problem of genetics. phTheory Probab. Appl., 4, 218-220, 1959.
  • Kurtz, Thomas G. Semigroups of conditioned shifts and approximation of Markov processes. Ann. Probability 3 (1975), no. 4, 618–642.
  • Kurtz, Thomas G. Diffusion approximations for branching processes. Branching processes (Conf., Saint Hippolyte, Que., 1976), pp. 269–292, Adv. Probab. Related Topics, 5, Dekker, New York, 1978.
  • Lamperti, John. Continuous state branching processes. Bull. Amer. Math. Soc. 73 1967 382–386.
  • Lamperti, John. The limit of a sequence of branching processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 7 1967 271–288.
  • Lamperti, John. Limiting distributions for branching processes. 1967 Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 2 pp. 225–241 Univ. California Press, Berkeley, Calif.
  • Lindvall, Torgny. Convergence of critical Galton-Watson branching processes. J. Appl. Probability 9 (1972), 445–450.
  • Roelly-Coppoletta, Sylvie. A criterion of convergence of measure-valued processes: application to measure branching processes. Stochastics 17 (1986), no. 1-2, 43–65.
  • Silverstein, M. L. A new approach to local times. J. Math. Mech. 17 1967/1968 1023–1054.
  • Smith, Walter L.; Wilkinson, William E. On branching processes in random environments. Ann. Math. Statist. 40 1969 814–827.
  • Whitt, Ward. Some useful functions for functional limit theorems. Math. Oper. Res. 5 (1980), no. 1, 67–85.
  • Wong, Eugene; Zakai, Moshe. On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36 1965 1560–1564.