Electronic Journal of Probability

On the critical curves of the pinning and copolymer models in correlated Gaussian environment

Quentin Berger and Julien Poisat

Full-text: Open access

Abstract

We investigate the disordered copolymer and pinning models, in the case of a correlated Gaussian environment with correlations, and when the return distribution of the underlying renewal process has a polynomial tail. As far as the copolymer model is concerned, we prove disorder relevance both in terms of critical points and critical exponents, in the case of non-negative correlations. When some of the correlations are negative, even the annealed model becomes non-trivial. Moreover, when the return distribution has a finite mean, we are able to compute the weak coupling limit of the critical curves for both models, with no restriction on the correlations other than summability. This generalizes the result of Berger,Caravennale, Poisat, Sun and Zygouras to the correlated case. Interestingly, in the copolymer model, the weak coupling limit of the critical curve turns out to be the maximum of two quantities: one generalizing the limit found in the IID case, the other one generalizing the so-called Monthus bound.

Article information

Source
Electron. J. Probab. Volume 20 (2015), paper no. 71, 35 pp.

Dates
Accepted: 25 June 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465067177

Digital Object Identifier
doi:10.1214/EJP.v20-3514

Mathematical Reviews number (MathSciNet)
MR3361259

Zentralblatt MATH identifier
1323.82022

Subjects
Primary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)
Secondary: 2D60 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Pinning Model Copolymer Model Critical Curve Fractional Moments Coarse Graining Correlations

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Berger, Quentin; Poisat, Julien. On the critical curves of the pinning and copolymer models in correlated Gaussian environment. Electron. J. Probab. 20 (2015), paper no. 71, 35 pp. doi:10.1214/EJP.v20-3514. https://projecteuclid.org/euclid.ejp/1465067177


Export citation

References

  • Alexander, Kenneth S. The effect of disorder on polymer depinning transitions. Comm. Math. Phys. 279 (2008), no. 1, 117–146.
  • Alexander, Kenneth S.; Zygouras, Nikos. Quenched and annealed critical points in polymer pinning models. Comm. Math. Phys. 291 (2009), no. 3, 659–689.
  • Alexander, Kenneth S.; Zygouras, Nikos. Equality of critical points for polymer depinning transitions with loop exponent one. Ann. Appl. Probab. 20 (2010), no. 1, 356–366.
  • Asmussen, Søren. Applied probability and queues. Second edition. Applications of Mathematics (New York), 51. Stochastic Modelling and Applied Probability. Springer-Verlag, New York, 2003. xii+438 pp. ISBN: 0-387-00211-1
  • Berger, Q., Comments on the Influence of Disorder for Pinning Model in Correlated Gaussian Environment, ALEA, Lat. Am. J. Probab. Math. Stat., 10 (2), (2013) 953–-977.
  • Berger, Quentin. Pinning Model in Random Correlated Environment: Appearance of an Infinite Disorder Regime. J. Stat. Phys. 155 (2014), no. 3, 544–570.
  • Berger, Quentin; Caravenna, Francesco; Poisat, Julien; Sun, Rongfeng; Zygouras, Nikos. The critical curves of the random pinning and copolymer models at weak coupling. Comm. Math. Phys. 326 (2014), no. 2, 507–530.
  • Bingham, N. H.; Goldie, C. M.; Teugels, J. L. Regular variation. Encyclopedia of Mathematics and its Applications, 27. Cambridge University Press, Cambridge, 1987. xx+491 pp. ISBN: 0-521-30787-2
  • Bodineau, Thierry; Giacomin, Giambattista. On the localization transition of random copolymers near selective interfaces. J. Statist. Phys. 117 (2004), no. 5-6, 801–818.
  • Bodineau, Thierry; Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio Lucio. Copolymers at selective interfaces: new bounds on the phase diagram. J. Stat. Phys. 132 (2008), no. 4, 603–626.
  • Bolthausen, Erwin; den Hollander, Frank. Localization transition for a polymer near an interface. Ann. Probab. 25 (1997), no. 3, 1334–1366.
  • Bolthausen, E., den Hollander, F., Opoku, A.A. A copolymer near a selective interface: variational characterization of the free energy, arXiv:1110.1315 (2011).
  • Caravenna, Francesco; Giacomin, Giambattista. The weak coupling limit of disordered copolymer models. Ann. Probab. 38 (2010), no. 6, 2322–2378.
  • Caravenna, Francesco; Giacomin, Giambattista; Gubinelli, Massimiliano. Large scale behavior of semiflexible heteropolymers. Ann. Inst. Henri Poincaré Probab. Stat. 46 (2010), no. 1, 97–118.
  • Caravenna, F., Sun, R., Zygouras, N. Polynomial chaos and scaling limits of disordered systems, arXiv:1312.3357.
  • Cheliotis, Dimitris; den Hollander, Frank. Variational characterization of the critical curve for pinning of random polymers. Ann. Probab. 41 (2013), no. 3B, 1767–1805.
  • Cornfeld, I. P.; Fomin, S. V.; SinaÄ­, Ya. G. Ergodic theory. Translated from the Russian by A. B. SosinskiÄ­. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 245. Springer-Verlag, New York, 1982. x+486 pp. ISBN: 0-387-90580-4
  • Derrida, Bernard; Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio Lucio. Fractional moment bounds and disorder relevance for pinning models. Comm. Math. Phys. 287 (2009), no. 3, 867–887.
  • Giacomin, Giambattista. Random polymer models. Imperial College Press, London, 2007. xvi+242 pp. ISBN: 978-1-86094-786-5; 1-86094-786-7
  • Giacomin, Giambattista. Disorder and critical phenomena through basic probability models. Lecture notes from the 40th Probability Summer School held in Saint-Flour, 2010. Lecture Notes in Mathematics, 2025. Ecole d'été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer School] Springer, Heidelberg, 2011. xii+130 pp. ISBN: 978-3-642-21155-3
  • Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio Lucio. Disorder relevance at marginality and critical point shift. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 1, 148–175.
  • Giacomin, Giambattista; Lacoin, Hubert; Toninelli, Fabio. Marginal relevance of disorder for pinning models. Comm. Pure Appl. Math. 63 (2010), no. 2, 233–265.
  • Giacomin, Giambattista; Toninelli, Fabio Lucio. Smoothing effect of quenched disorder on polymer depinning transitions. Comm. Math. Phys. 266 (2006), no. 1, 1–16.
  • Giacomin, G., Toninelli, F.L. The localized phase of disordered copolymers with adsorption, ALEA Lat. Am. J. Probab. Math. Stat. 1 (2006), 149–180.
  • Grenander, Ulf; Szegö, Gabor. Toeplitz forms and their applications. California Monographs in Mathematical Sciences University of California Press, Berkeley-Los Angeles 1958 vii+245 pp.
  • Hammersley, J. M., Generalization of the fundamental theorem on sub-additive functions, Proc. Cambridge Philos. Soc. 58 (1962) 235–238.
  • Harris, A.B. Effect of random defects on the critical behaviour of Ising models, J. Phys. C. 7 (1974), 1671–1692.
  • den Hollander, Frank. Random polymers. Lectures from the 37th Probability Summer School held in Saint-Flour, 2007. Lecture Notes in Mathematics, 1974. Springer-Verlag, Berlin, 2009. xiv+258 pp. ISBN: 978-3-642-00332-5
  • Lacoin, Hubert. The martingale approach to disorder irrelevance for pinning models. Electron. Commun. Probab. 15 (2010), 418–427.
  • Monthus, C. On the localization of random heteropolymers at the interface between two selective solvents, Eur. Phys. J. B 13 (2000), 111–-130.
  • Poisat, J. Ruelle-Perron-Frobenius operator approach to the annealed pinning model with Gaussian long-range correlated disorder. Markov Process. Related Fields 19 (2013), no. 3, 577–606.
  • Pólya, G. Remarks on characteristic functions. Proceedings of the Berkeley Symposium on Mathematical Statistics and Probability, 1945, 1946, pp. 115–123. University of California Press, Berkeley and Los Angeles, 1949.
  • Toninelli, Fabio Lucio. A replica-coupling approach to disordered pinning models. Comm. Math. Phys. 280 (2008), no. 2, 389–401.
  • Toninelli, Fabio Lucio. Disordered pinning models and copolymers: beyond annealed bounds. Ann. Appl. Probab. 18 (2008), no. 4, 1569–1587.
  • Toninelli, Fabio Lucio. Coarse graining, fractional moments and the critical slope of random copolymers. Electron. J. Probab. 14 (2009), no. 20, 531–547.