Electronic Journal of Probability

Local times for typical price paths and pathwise Tanaka formulas

Nicolas Perkowski and David Prömel

Full-text: Open access

Abstract

Following a hedging based approach to model free financial mathematics, we prove that it should be possible to make an arbitrarily large profit by investing in those one-dimensional paths which do not possess local times. The local time is constructed from discrete approximations, and it is shown that it is $\alpha$-Hölder continuous for all $\alpha < 1/2$. Additionally, we provide various generalizations of Föllmer's pathwise Itô formula.

Article information

Source
Electron. J. Probab., Volume 20 (2015), paper no. 46, 15 pp.

Dates
Accepted: 18 April 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465067152

Digital Object Identifier
doi:10.1214/EJP.v20-3534

Mathematical Reviews number (MathSciNet)
MR3339866

Zentralblatt MATH identifier
1321.60152

Subjects
Primary: 60H05: Stochastic integrals 60J60: Diffusion processes [See also 58J65]
Secondary: 91G99: None of the above, but in this section

Keywords
It\^o formula Local times Model uncertainty Tanaka formula

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Perkowski, Nicolas; Prömel, David. Local times for typical price paths and pathwise Tanaka formulas. Electron. J. Probab. 20 (2015), paper no. 46, 15 pp. doi:10.1214/EJP.v20-3534. https://projecteuclid.org/euclid.ejp/1465067152


Export citation

References

  • Bertoin, Jean. Temps locaux et integration stochastique pour les processus de Dirichlet. (French) [Local times and stochastic integration for Dirichlet processes] Seminaire de Probabilites, XXI, 191–205, Lecture Notes in Math., 1247, Springer, Berlin, 1987.
  • Bouleau, Nicolas; Yor, Marc. Sur la variation quadratique des temps locaux de certaines semimartingales. (French) C. R. Acad. Sci. Paris Ser. I Math. 292 (1981), no. 9, 491–494.
  • Peter P. Carr and Robert A. Jarrow, The Stop-Loss Start-Gain Paradox and Option Valuation: A New Decomposition into Intrinsic and Time Value, The Review of Financal Studies 3 (1990), no. 3, 469–492.
  • Chacon, R. V.; Le Jan, Y.; Perkins, E.; Taylor, S. J. Generalised arc length for Brownian motion and Levy processes. Z. Wahrsch. Verw. Gebiete 57 (1981), no. 2, 197–211.
  • Davis, Mark; Obłój, Jan; Raval, Vimal. Arbitrage bounds for prices of weighted variance swaps. Math. Finance 24 (2014), no. 4, 821–854.
  • Hans Föllmer, Calcul d'Itô sans probabilités, Séminaire de Probabilités XV 80 (1981), 143–150.
  • Föllmer, Hans; Schied, Alexander. Probabilistic aspects of finance. Bernoulli 19 (2013), no. 4, 1306–1326.
  • Feng, Chunrong; Zhao, Huaizhong. Two-parameter $p,q$-variation paths and integrations of local times. Potential Anal. 25 (2006), no. 2, 165–204.
  • Peter Imkeller and Nicolas Perkowski, The existence of dominating local martingale measures, arXiv:1111.3885, to appear in Finance Stoch. (2015).
  • Khoshnevisan, Davar. Exact rates of convergence to Brownian local time. Ann. Probab. 22 (1994), no. 3, 1295–1330.
  • Karatzas, Ioannis; Kardaras, Constantinos. The numeraire portfolio in semimartingale financial models. Finance Stoch. 11 (2007), no. 4, 447–493.
  • Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1988. xxiv+470 pp. ISBN: 0-387-96535-1
  • Marc Lemieux, On the quadratic variation of semi-martingales, Master's thesis, University of British Columbia, 1983, supervised by Edwin A. Perkins, available at rlhttps://circle.ubc.ca/handle/2429/23964.
  • Lyons, Terry J. Differential equations driven by rough signals. Rev. Mat. Iberoamericana 14 (1998), no. 2, 215–310.
  • Mörters, Peter; Peres, Yuval. Brownian motion. With an appendix by Oded Schramm and Wendelin Werner. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, Cambridge, 2010. xii+403 pp. ISBN: 978-0-521-76018-8
  • Nicolas Perkowski and David J. Prömel, phPathwise stochastic integrals for model free finance, preprint arXiv:1311.6187v2 (2013).
  • Ruf, Johannes. Hedging under arbitrage. Math. Finance 23 (2013), no. 2, 297–317.
  • Sondermann, Dieter. Introduction to stochastic calculus for finance. A new didactic approach. Lecture Notes in Economics and Mathematical Systems, 579. Springer-Verlag, Berlin, 2006. x+136 pp. ISBN: 978-3-540-34836-8; 3-540-34836-0
  • Tommi Sottinen and Lauri Viitasaari, Pathwise Integrals and Itô-Tanaka Formula for Gaussian Processes, Journal of Theoretical Probability (2014), 1–27.
  • Vovk, Vladimir. Rough paths in idealized financial markets. Lith. Math. J. 51 (2011), no. 2, 274–285.
  • Vovk, Vladimir. Rough paths in idealized financial markets. Lith. Math. J. 51 (2011), no. 2, 274–285.
  • Vovk, Vladimir. Continuous-time trading and the emergence of probability. Finance Stoch. 16 (2012), no. 4, 561–609.
  • M. Wuermli, phLokalzeiten für Martingale, Master's thesis, Universität Bonn, 1980, supervised by Hans Föllmer.
  • Young, L. C. An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 (1936), no. 1, 251–282.