Electronic Journal of Probability

Escape probability and transience for SLE

Laurence Field and Gregory Lawler

Full-text: Open access

Abstract

We give estimates for the probability that a chordal, radial or two-sided radial SLE$_\kappa$ curve retreats far from its terminal point after coming close to it, for $\kappa \le 4$. The estimates are uniform over all initial segments of the curve, and are sharp up to a universal constant.

Article information

Source
Electron. J. Probab., Volume 20 (2015), paper no. 10, 14 pp.

Dates
Accepted: 11 February 2015
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465067116

Digital Object Identifier
doi:10.1214/EJP.v20-3714

Mathematical Reviews number (MathSciNet)
MR3317152

Zentralblatt MATH identifier
1321.60163

Subjects
Primary: 60J67: Stochastic (Schramm-)Loewner evolution (SLE)
Secondary: 60J65: Brownian motion [See also 58J65]

Keywords
Schramm-Loewner evolution Brownian motion

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Field, Laurence; Lawler, Gregory. Escape probability and transience for SLE. Electron. J. Probab. 20 (2015), paper no. 10, 14 pp. doi:10.1214/EJP.v20-3714. https://projecteuclid.org/euclid.ejp/1465067116


Export citation

References

  • Alberts, Tom; Kozdron, Michael J. Intersection probabilities for a chordal SLE path and a semicircle. Electron. Commun. Probab. 13 (2008), 448–460.
  • Lawler, Gregory F. Conformally invariant processes in the plane. Mathematical Surveys and Monographs, 114. American Mathematical Society, Providence, RI, 2005. xii+242 pp. ISBN: 0-8218-3677-3
  • Lawler, Gregory F. Continuity of radial and two-sided radial SLE at the terminal point. In the tradition of Ahlfors-Bers. VI, 101–124, Contemp. Math., 590, Amer. Math. Soc., Providence, RI, 2013.
  • Lawler, Gregory F.; Lind, Joan R. Two-sided SLE$_ {8/3}$ and the infinite self-avoiding polygon. Universality and renormalization, 249–280, Fields Inst. Commun., 50, Amer. Math. Soc., Providence, RI, 2007.
  • Lawler, Gregory F.; Rezaei, Mohammad A. Minkowski content and natural parametrization for the Schramm–Loewner evolution. To appear in Ann. Probab., arXiv:1211.4146
  • Lawler, Gregory F.; Werness, Brent M. Multi-point Green's functions for SLE and an estimate of Beffara. Ann. Probab. 41 (2013), no. 3A, 1513–1555.
  • Miller, Jason; Sheffield, Scott. Imaginary geometry IV: interior rays, whole-plane reversibility, and space-filling trees, arXiv:1302.4738
  • Rohde, Steffen; Schramm, Oded. Basic properties of SLE. Ann. of Math. (2) 161 (2005), no. 2, 883–924.