Electronic Journal of Probability

The contact process with fast voting

Rick Durrett, Thomas Liggett, and Yuan Zhang

Full-text: Open access

Abstract

Consider a combination of the contact process and the voter model in which deaths occur at rate 1 per site, and across each edge between nearest neighbors births occur at rate $\lambda$ and voting events occur at rate $\theta$. We are interested in the asymptotics as $\theta \to\infty$ of the critical value $\lambda_c(\theta)$ for the existence of a nontrivial stationary distribution. In $d \ge 3$, $\lambda_c(\theta) \to 1/(2d\rho_d)$ where $\rho_d$ is the probability a $d$ dimensional simple random walk does not return to its starting point.In $d=2$, $\lambda_c(\theta)/\log(\theta) \to 1/4\pi$, while in $d=1$, $\lambda_c(\theta)/\theta^{1/2}$ has $\liminf \ge 1/\sqrt{2}$ and $\limsup < \infty$.The lower bound might be the right answer, but proving this, or even getting a reasonable upper bound, seems to be a difficult problem.

Article information

Source
Electron. J. Probab., Volume 19 (2014), paper no. 28, 19 pp.

Dates
Accepted: 3 March 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465065670

Digital Object Identifier
doi:10.1214/EJP.v19-3021

Mathematical Reviews number (MathSciNet)
MR3174840

Zentralblatt MATH identifier
1291.60203

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
contact process voter model block construction

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Durrett, Rick; Liggett, Thomas; Zhang, Yuan. The contact process with fast voting. Electron. J. Probab. 19 (2014), paper no. 28, 19 pp. doi:10.1214/EJP.v19-3021. https://projecteuclid.org/euclid.ejp/1465065670


Export citation

References

  • Bramson, Maury; Griffeath, David. On the Williams-Bjerknes tumour growth model. I. Ann. Probab. 9 (1981), no. 2, 173–185.
  • Cox, J. Theodore; Durrett, Richard; Perkins, Edwin A. Voter model perturbations and reaction diffusion equations. Astérisque No. 349 (2013), vi+113 pp. ISBN: 978-2-85629-355-3
  • Zähle, Iljana; Cox, J. Theodore; Durrett, Richard. The stepping stone model. II. Genealogies and the infinite sites model. Ann. Appl. Probab. 15 (2005), no. 1B, 671–699.
  • Durrett, Rick. Ten lectures on particle systems. Lectures on probability theory (Saint-Flour, 1993), 97–201, Lecture Notes in Math., 1608, Springer, Berlin, 1995.
  • Durrett, Rick; Zähle, Iljana. On the width of hybrid zones. Stochastic Process. Appl. 117 (2007), no. 12, 1751–1763.
  • Feller, William. An introduction to probability theory and its applications. Vol. II. John Wiley & Sons, Inc., New York-London-Sydney 1966 xviii+636 pp.
  • Fukai, Yasunari; Uchiyama, Kôhei. Potential kernel for two-dimensional random walk. Ann. Probab. 24 (1996), no. 4, 1979–1992.
  • Griffeath, David. Additive and cancellative interacting particle systems. Lecture Notes in Mathematics, 724. Springer, Berlin, 1979. iv+108 pp. ISBN: 3-540-09508-X
  • Harris, T. E. Additive set-valued Markov processes and graphical methods. Ann. Probability 6 (1978), no. 3, 355–378.
  • Holley, R.; Liggett, T. M. The survival of contact processes. Ann. Probability 6 (1978), no. 2, 198–206.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Liggett, Thomas M. Improved upper bounds for the contact process critical value. Ann. Probab. 23 (1995), no. 2, 697–723.
  • Liggett, Thomas M. Stochastic interacting systems: contact, voter and exclusion processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 324. Springer-Verlag, Berlin, 1999. xii+332 pp. ISBN: 3-540-65995-1
  • Liggett, T.M. (2013) Survival of the contact+voter process on the integers. http://www.math.ucla.edu/~tml/contact+voter.pdf
  • Spitzer, Frank. Principles of random walk. Second edition. Graduate Texts in Mathematics, Vol. 34. Springer-Verlag, New York-Heidelberg, 1976. xiii+408 pp.