Electronic Journal of Probability

Excursions of excited random walks on integers

Elena Kosygina and Martin Zerner

Full-text: Open access

Abstract

Several phase transitions for excited random walks on the integers are known to be characterized by a certain drift parameter $\delta\in\mathbb R$. For recurrence/transience the critical threshold is $|\delta|=1$, for ballisticity it is $|\delta|=2$ and for diffusivity $|\delta|=4$. In this paper we establish a phase transition at $|\delta|=3$. We show that the  expected return time of the walker to the starting point, conditioned on return, is finite iff $|\delta|>3$.  This result follows from an explicit description of the tail behaviour of the return time as a function of $\delta$, which is achieved by diffusion approximation of related branching processes by squared Bessel processes.

Article information

Source
Electron. J. Probab., Volume 19 (2014), paper no. 25, 25 pp.

Dates
Accepted: 28 February 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465065667

Digital Object Identifier
doi:10.1214/EJP.v19-2940

Mathematical Reviews number (MathSciNet)
MR3174837

Zentralblatt MATH identifier
1291.60093

Subjects
Primary: 60G50: Sums of independent random variables; random walks
Secondary: 60K37: Processes in random environments 60F17: Functional limit theorems; invariance principles 60J70: Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) [See also 92Dxx] 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 60J85: Applications of branching processes [See also 92Dxx]

Keywords
branching process cookie walk diffusion approximation excited random walk excursion squared Bessel process return time strong transience

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Kosygina, Elena; Zerner, Martin. Excursions of excited random walks on integers. Electron. J. Probab. 19 (2014), paper no. 25, 25 pp. doi:10.1214/EJP.v19-2940. https://projecteuclid.org/euclid.ejp/1465065667


Export citation

References

  • Afanasyev, V. I. On the maximum of a critical branching process in a random environment. (Russian) Diskret. Mat. 11 (1999), no. 2, 86–102; translation in Discrete Math. Appl. 9 (1999), no. 3, 267–284
  • Alexander, Kenneth S. Excursions and local limit theorems for Bessel-like random walks. Electron. J. Probab. 16 (2011), no. 1, 1–44.
  • Alili, S. Asymptotic behaviour for random walks in random environments. J. Appl. Probab. 36 (1999), no. 2, 334–349.
  • Alon, Noga; Spencer, Joel H. The probabilistic method. Second edition. With an appendix on the life and work of Paul Erdős. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, 2000. xviii+301 pp. ISBN: 0-471-37046-0
  • Antal, T.; Redner, S. The excited random walk in one dimension. J. Phys. A 38 (2005), no. 12, 2555–2577.
  • Athreya, Krishna B.; Karlin, Samuel. On branching processes with random environments. I. Extinction probabilities. Ann. Math. Statist. 42 (1971), 1499–1520.
  • Athreya, K. B.; Ney, P. E. Branching processes. Reprint of the 1972 original [Springer, New York; ]. Dover Publications, Inc., Mineola, NY, 2004. xii+287 pp. ISBN: 0-486-43474-5
  • Basdevant, Anne-Laure; Singh, Arvind. On the speed of a cookie random walk. Probab. Theory Related Fields 141 (2008), no. 3-4, 625–645.
  • Bauernschubert, Elisabeth. Perturbing transient random walk in a random environment with cookies of maximal strength. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 3, 638–653.
  • E. Bauernschubert. Recurrence and transience of critical branching processes in random environment with immigration and an application to excited random walks. To appear in Adv. in Appl. Probab., 46(3), 2014. ARXIV1301.5450
  • Billingsley, Patrick. Convergence of probability measures. Second edition. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1999. x+277 pp. ISBN: 0-471-19745-9
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8
  • Feller, William. Diffusion processes in genetics. Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, pp. 227–246. University of California Press, Berkeley and Los Angeles, 1951.
  • Formanov, Sh. K.; Yasin, Makhmud Takha; Kaverin, S. V. Life spans of Galton-Watson processes with migration. (Russian) Asymptotic problems in probability theory and mathematical statistics (Russian), 117–135, 175, "Fan”, Tashkent, 1990.
  • Göing-Jaeschke, Anja; Yor, Marc. A survey and some generalizations of Bessel processes. Bernoulli 9 (2003), no. 2, 313–349.
  • Harris, T. E. First passage and recurrence distributions. Trans. Amer. Math. Soc. 73, (1952). 471–486.
  • Höpfner, R. A note on the probability of extinction in a class of population-size-dependent Galton-Watson processes. J. Appl. Probab. 22 (1985), no. 4, 920–925.
  • Hughes, Barry D. Random walks and random environments. Vol. 1. Random walks. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. xxii+631 pp. ISBN: 0-19-853788-3
  • Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3
  • Ivanoff, B. Gail; Seneta, E. The critical branching process with immigration stopped at zero. J. Appl. Probab. 22 (1985), no. 1, 223–227.
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 1987. xviii+601 pp. ISBN: 3-540-17882-1
  • Kosygina, Elena; Mountford, Thomas. Limit laws of transient excited random walks on integers. Ann. Inst. Henri Poincaré Probab. Stat. 47 (2011), no. 2, 575–600.
  • Kosygina, Elena; Zerner, Martin P. W. Positively and negatively excited random walks on integers, with branching processes. Electron. J. Probab. 13 (2008), no. 64, 1952–1979.
  • Kosygina, Elena; Zerner, Martin P. W. Excited random walks: results, methods, open problems. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (2013), no. 1, 105–157.
  • Levin, David A.; Peres, Yuval; Wilmer, Elizabeth L. Markov chains and mixing times. With a chapter by James G. Propp and David B. Wilson. American Mathematical Society, Providence, RI, 2009. xviii+371 pp. ISBN: 978-0-8218-4739-8
  • Mellein, Bernhard. Kac functionals of diffusion processes approximating critical branching processes. Bol. Soc. Mat. Mexicana (2) 28 (1983), no. 2, 95–107.
  • Pakes, A. G. On the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 12 (1971), 476–482.
  • Pakes, A. G. Further results on the critical Galton-Watson process with immigration. J. Austral. Math. Soc. 13 (1972), 277–290.
  • J. Peterson. Strict monotonicity properties in one-dimensional excited random walks. Markov Process. Related Fields. 19(4):721–734, 2013. ARXIV1210.4518
  • Revuz, Daniel; Yor, Marc. Continuous martingales and Brownian motion. Third edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 293. Springer-Verlag, Berlin, 1999. xiv+602 pp. ISBN: 3-540-64325-7
  • Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus. Reprint of the second (1994) edition. Cambridge Mathematical Library. Cambridge University Press, Cambridge, 2000. xiv+480 pp. ISBN: 0-521-77593-0
  • Smith, Walter L.; Wilkinson, William E. On branching processes in random environments. Ann. Math. Statist. 40 1969 814–827.
  • Solomon, Fred. Random walks in a random environment. Ann. Probability 3 (1975), 1–31.
  • Tóth, Bálint. Generalized Ray-Knight theory and limit theorems for self-interacting random walks on ${\bf Z}^ 1$. Ann. Probab. 24 (1996), no. 3, 1324–1367.
  • Yamada, Toshio; Watanabe, Shinzo. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 1971 155–167.
  • Zerner, Martin P. W. Multi-excited random walks on integers. Probab. Theory Related Fields 133 (2005), no. 1, 98–122.
  • A. M. Zubkov. Life-periods of a branching process with immigration. Theory Probab. Appl., 17(1):174–183, 1972.