Electronic Journal of Probability

Further results on consensus formation in the Deffuant model

Olle Häggström and Timo Hirscher

Full-text: Open access

Abstract

The so-called Deffuant model describes a pattern for social interaction, in which two neighboring individuals randomly meet and share their opinions on a certain topic, if their discrepancy is not beyond a given threshold $\theta$. The major focus of the analyses, both theoretical and based on simulations, lies on whether these single interactions lead to a global consensus in the long run or not. First, we generalize a result of Lanchier for the Deffuant model on $\mathbb{Z}$, determining the critical value for $\theta$ at which a phase transition of the long term behavior takes place, to other distributions of the initial opinions than i.i.d. uniform on $[0,1]$. Then we shed light on the situations where the underlying line graph $\mathbb{Z}$ is replaced by higher-dimensional lattices $\mathbb{Z}^d,\ d\geq2$, or the infinite cluster of supercritical i.i.d. bond percolation on these lattices.

Article information

Source
Electron. J. Probab., Volume 19 (2014), paper no. 19, 26 pp.

Dates
Accepted: 4 February 2014
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465065661

Digital Object Identifier
doi:10.1214/EJP.v19-3116

Mathematical Reviews number (MathSciNet)
MR3164772

Zentralblatt MATH identifier
1286.91114

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Deffuant model consensus formation percolation

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Häggström, Olle; Hirscher, Timo. Further results on consensus formation in the Deffuant model. Electron. J. Probab. 19 (2014), paper no. 19, 26 pp. doi:10.1214/EJP.v19-3116. https://projecteuclid.org/euclid.ejp/1465065661


Export citation

References

  • Burton, R. M.; Keane, M. Density and uniqueness in percolation. Comm. Math. Phys. 121 (1989), no. 3, 501–505.
  • Castellano, C., Fortunato, S. and Loreto, V., Statistical physics of social dynamics, Reviews of Modern Physics, Vol. 81, pp. 591-646, 2009.
  • Deffuant, G., Neau, D., Amblard, F. and Weisbuch, G., Mixing beliefs among interacting agents, Advances in Complex Systems, Vol. 3, pp. 87-98, 2000.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Häggström, Olle. A pairwise averaging procedure with application to consensus formation in the Deffuant model. Acta Appl. Math. 119 (2012), 185–201.
  • Häggström, Olle; Schonmann, Roberto H.; Steif, Jeffrey E. The Ising model on diluted graphs and strong amenability. Ann. Probab. 28 (2000), no. 3, 1111–1137.
  • Hirscher, T., The Deffuant model on Z with higher-dimensional opinion spaces, in preparation.
  • Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2
  • Kellerer, Hans G. Markov-Komposition und eine Anwendung auf Martingale. (German) Math. Ann. 198 (1972), 99–122.
  • Lanchier, N. The critical value of the Deffuant model equals one half. ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), no. 2, 383–402.
  • Liggett, Thomas M. Interacting particle systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Meilijson, Isaac; Nádas, Arthur. Convex majorization with an application to the length of critical paths. J. Appl. Probab. 16 (1979), no. 3, 671–677.
  • Shaked, Moshe; Shanthikumar, J. George. Stochastic orders. Springer Series in Statistics. Springer, New York, 2007. xvi+473 pp. ISBN: 978-0-387-32915-4; 0-387-32915-3
  • Shang, Y., Deffuant model with general opinion distributions: First impression and critical confidence bound, Complexity, Vol. 19 (2), pp. 38-49, 2013.
  • Weisbuch, G., Bounded confidence and social networks, The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 38 (2), pp. 339-343, 2004.