Electronic Journal of Probability

On a class of martingale problems on Banach spaces

Markus Kunze

Full-text: Open access

Abstract

We introduce the local martingale problem associated to semilinear stochastic evolution equations driven by a cylindrical Wiener process and establish a one-to-one correspondence between solutions of the martingale problem and (analytically) weak solutions of the stochastic equation. We also prove that the solutions of well-posed equations are strong Markov processes. We apply our results to semilinear stochastic equations with additive noise where the semilinear term is merely measurable and to stochastic reaction-diffusion equations with Hölder continuous multiplicative noise.

Article information

Source
Electron. J. Probab., Volume 18 (2013), paper no. 104, 30 pp.

Dates
Accepted: 11 December 2013
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465064329

Digital Object Identifier
doi:10.1214/EJP.v18-2924

Mathematical Reviews number (MathSciNet)
MR3145051

Zentralblatt MATH identifier
1367.60043

Subjects
Primary: 60H15: Stochastic partial differential equations [See also 35R60]
Secondary: 60J25: Continuous-time Markov processes on general state spaces

Keywords
local Martingale problem strong Markov property stochastic partial differential equations

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Kunze, Markus. On a class of martingale problems on Banach spaces. Electron. J. Probab. 18 (2013), paper no. 104, 30 pp. doi:10.1214/EJP.v18-2924. https://projecteuclid.org/euclid.ejp/1465064329


Export citation

References

  • Bogachev, V. I. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007. Vol. I: xviii+500 pp., Vol. II: xiv+575 pp. ISBN: 978-3-540-34513-8; 3-540-34513-2
  • Brzeźniak, Zdzisław; Gatarek, Dariusz. Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. Stochastic Process. Appl. 84 (1999), no. 2, 187–225.
  • Brzeźniak, Zdzisław; Maslowski, Bohdan; Seidler, Jan. Stochastic nonlinear beam equations. Probab. Theory Related Fields 132 (2005), no. 1, 119–149.
  • Burkholder, Donald L. Martingales and singular integrals in Banach spaces. Handbook of the geometry of Banach spaces, Vol. I, 233–269, North-Holland, Amsterdam, 2001.
  • Cerrai, Sandra. Stochastic reaction-diffusion systems with multiplicative noise and non-Lipschitz reaction term. Probab. Theory Related Fields 125 (2003), no. 2, 271–304.
  • Chojnowska-Michalik, A.; Gołdys, B. Existence, uniqueness and invariant measures for stochastic semilinear equations on Hilbert spaces. Probab. Theory Related Fields 102 (1995), no. 3, 331–356.
  • Da Prato, G.; Kwapień, S.; Zabczyk, J. Regularity of solutions of linear stochastic equations in Hilbert spaces. Stochastics 23 (1987), no. 1, 1–23.
  • Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6
  • Ethier, Stewart N.; Kurtz, Thomas G. Markov processes. Characterization and convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons, Inc., New York, 1986. x+534 pp. ISBN: 0-471-08186-8
  • Garling, D. J. H. Brownian motion and UMD-spaces. Probability and Banach spaces (Zaragoza, 1985), 36–49, Lecture Notes in Math., 1221, Springer, Berlin, 1986.
  • Gatarek, Dariusz; Gołdys, Beniamin. On uniqueness in law of solutions to stochastic evolution equations in Hilbert spaces. Stochastic Anal. Appl. 12 (1994), no. 2, 193–203.
  • Gatarek, Dariusz; Gołdys, Beniamin. On weak solutions of stochastic equations in Hilbert spaces. Stochastics Stochastics Rep. 46 (1994), no. 1-2, 41–51.
  • Hofmanová¡, Martina; Seidler, Jan. On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30 (2012), no. 1, 100–121.
  • Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes. Second edition. North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3
  • Jacod, Jean; Shiryaev, Albert N. Limit theorems for stochastic processes. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 288. Springer-Verlag, Berlin, 2003. xx+661 pp. ISBN: 3-540-43932-3
  • Kallenberg, Olav. Foundations of modern probability. Second edition. Probability and its Applications (New York). Springer-Verlag, New York, 2002. xx+638 pp. ISBN: 0-387-95313-2
  • Karatzas, Ioannis; Shreve, Steven E. Brownian motion and stochastic calculus. Second edition. Graduate Texts in Mathematics, 113. Springer-Verlag, New York, 1991. xxiv+470 pp. ISBN: 0-387-97655-8
  • Köthe, Gottfried. Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159 Springer-Verlag New York Inc., New York 1969 xv+456 pp.
  • M. C. Kunze, Stochastic reaction-diffusion systems with Hölder continuous multiplicative noise, preprint. arXiv:1209.4821, 2012.
  • M. C. Kunze, Perturbation of strong Feller semigroups and well-posedness of semilinear stochastic equations on banach spaces, Stochastics An International Journal of Probability and Stochastic Processes 85 (2013), no. 6, 960–986.
  • Kunze, Markus; van Neerven, Jan. Continuous dependence on the coefficients and global existence for stochastic reaction diffusion equations. J. Differential Equations 253 (2012), no. 3, 1036–1068.
  • Kurtz, Thomas G. The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12 (2007), 951–965.
  • McConnell, Terry R. Decoupling and stochastic integration in UMD Banach spaces. Probab. Math. Statist. 10 (1989), no. 2, 283–295.
  • C. Mueller, L. Mytnik, and E. Perkins, Nonuniqueness for a parabolic SPDE with frac34-eps-Hölder diffusion coefficients, preprint. arXiv:1201.2767, 2012.
  • Murray, J. D. Mathematical biology. Second edition. Biomathematics, 19. Springer-Verlag, Berlin, 1993. xiv+767 pp. ISBN: 3-540-57204-X
  • Mytnik, Leonid; Perkins, Edwin; Sturm, Anja. On pathwise uniqueness for stochastic heat equations with non-Lipschitz coefficients. Ann. Probab. 34 (2006), no. 5, 1910–1959.
  • van Neerven, Jan. The adjoint of a semigroup of linear operators. Lecture Notes in Mathematics, 1529. Springer-Verlag, Berlin, 1992. x+195 pp. ISBN: 3-540-56260-5
  • van Neerven, $gamma$-Radonifying operators: a survey, AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis, 2010, pp. 1–62.
  • J. M. A. M. noopsortNeervenvan Neerven and M. C. Veraar, phOn the stochastic Fubini theorem in infinite dimensions, Stochastic partial differential equations and applications–-VII, Lect. Notes Pure Appl. Math., vol. 245, Chapman & Hall/CRC, Boca Raton, FL, 2006, pp. 323–336.
  • van Neerven, J. M. A. M.; Veraar, M. C.; Weis, L. Stochastic integration in UMD Banach spaces. Ann. Probab. 35 (2007), no. 4, 1438–1478.
  • van Neerven, J. M. A. M.; Veraar, M. C.; Weis, L. Stochastic evolution equations in UMD Banach spaces. J. Funct. Anal. 255 (2008), no. 4, 940–993.
  • van Neerven, J. M. A. M.; Weis, L. Stochastic integration of functions with values in a Banach space. Studia Math. 166 (2005), no. 2, 131–170.
  • Ondreját, Martin. Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426 (2004), 63 pp.
  • Ondreját, Martin. Brownian representations of cylindrical local martingales, martingale problem and strong Markov property of weak solutions of SPDEs in Banach spaces. Czechoslovak Math. J. 55(130) (2005), no. 4, 1003–1039.
  • Ondreját, Martin. Integral representations of cylindrical local martingales in every separable Banach space. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), no. 3, 365–379.
  • Parthasarathy, K. R. Probability measures on metric spaces. Reprint of the 1967 original. AMS Chelsea Publishing, Providence, RI, 2005. xii+276 pp. ISBN: 0-8218-3889-X
  • Schnaubelt, Roland; Veraar, Mark. Structurally damped plate and wave equations with random point force in arbitrary space dimensions. Differential Integral Equations 23 (2010), no. 9-10, 957–988.
  • Stroock, Daniel W.; Varadhan, S. R. S. Diffusion processes with continuous coefficients. I. Comm. Pure Appl. Math. 22 1969 345–400.
  • Yamada, Toshio; Watanabe, Shinzo. On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ. 11 1971 155–167.
  • Zambotti, Lorenzo. An analytic approach to existence and uniqueness for martingale problems in infinite dimensions. Probab. Theory Related Fields 118 (2000), no. 2, 147–168.
  • J. Zimmerschied, Über eine Faktorisierungsmethode für stochastische Evolutionsgleichungen in Banachräumen, Ph.D. thesis, Universiät Karlsruhe, 2006.