Electronic Journal of Probability

Renewal theorems for random walk in random scenery

Nadine Guillotin-Plantard and Françoise Pène

Full-text: Open access

Abstract

In this work, we establish renewal-type theorems, with precise asymptotics, in in the context of random walk in random sceneries.

Article information

Source
Electron. J. Probab., Volume 17 (2012), paper no. 78, 22 pp.

Dates
Accepted: 18 September 2012
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465062400

Digital Object Identifier
doi:10.1214/EJP.v17-1843

Mathematical Reviews number (MathSciNet)
MR2981903

Zentralblatt MATH identifier
1253.60096

Subjects
Primary: 60F05: Central limit and other weak theorems
Secondary: 60G52: Stable processes

Keywords
Random walk in random scenery renewal theory local time stable distribution

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Guillotin-Plantard, Nadine; Pène, Françoise. Renewal theorems for random walk in random scenery. Electron. J. Probab. 17 (2012), paper no. 78, 22 pp. doi:10.1214/EJP.v17-1843. https://projecteuclid.org/euclid.ejp/1465062400


Export citation

References

  • Blackwell, David. A renewal theorem. Duke Math. J. 15, (1948). 145–150.
  • Blackwell, David. Extension of a renewal theorem. Pacific J. Math. 3, (1953). 315–320.
  • Bolthausen, Erwin. A central limit theorem for two-dimensional random walks in random sceneries. Ann. Probab. 17 (1989), no. 1, 108–115.
  • Borodin, A. N. A limit theorem for sums of independent random variables defined on a recurrent random walk. (Russian) Dokl. Akad. Nauk SSSR 246 (1979), no. 4, 786–787.
  • Borodin, A. N. Limit theorems for sums of independent random variables defined on a transient random walk. (Russian) Investigations in the theory of probability distributions, IV. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 85 (1979), 17–29, 237, 244.
  • Castell, Fabienne; Guillotin-Plantard, Nadine; Pène, Françoise; Schapira, Bruno. A local limit theorem for random walks in random scenery and on randomly oriented lattices. Ann. Probab. 39 (2011), no. 6, 2079–2118.
  • Castell, F.; Guillotin-Plantard, N. and Pène, F.: Limit theorems for one and two-dimensional random walks in random scenery. To appear in Ann. Inst. H. Poincaré Probab. Statist., (2012).ARXIV1103.4453
  • Deligiannidis, G.; Utev, S. A. Computation of the asymptotics of the variance of the number of self-intersections of stable random walks using the Wiener-Darboux theory. (Russian) Sibirsk. Mat. Zh. 52 (2011), no. 4, 809–822; translation in Sib. Math. J. 52 (2011), no. 4, 639–650
  • den Hollander, Frank; Steif, Jeffrey E. Random walk in random scenery: a survey of some recent results. Dynamics & stochastics, 53–65, IMS Lecture Notes Monogr. Ser., 48, Inst. Math. Statist., Beachwood, OH, 2006.
  • Erdős, P.; Feller, W.; Pollard, H. A property of power series with positive coefficients. Bull. Amer. Math. Soc. 55, (1949). 201–204.
  • Feller, William. An introduction to probability theory and its applications. Vol. II. Second edition John Wiley & Sons, Inc., New York-London-Sydney 1971 xxiv+669 pp.
  • Guibourg, D.: Théorèmes de renouvellement pour des fonctionnelles additives associées á des chaines de Markov fortement ergodiques. phPhd Thesis, Rennes University (2011). rlhttp://tel.archives-ouvertes.fr/tel-00583175
  • Kesten, H.; Spitzer, F. A limit theorem related to a new class of self-similar processes. Z. Wahrsch. Verw. Gebiete 50 (1979), no. 1, 5–25.
  • Le Doussal, Pierre. Diffusion in layered random flows, polymers, electrons in random potentials, and spin depolarization in random fields. J. Statist. Phys. 69 (1992), no. 5-6, 917–954.
  • Le Gall, Jean-François; Rosen, Jay. The range of stable random walks. Ann. Probab. 19 (1991), no. 2, 650–705.
  • Matheron, G. and de Marsily G.: Is transport in porous media always diffusive? A counterxample. Water Resources Res. 16, (1980), 901–907.
  • Schmidt, Klaus. On recurrence. Z. Wahrsch. Verw. Gebiete 68 (1984), no. 1, 75–95.
  • Spitzer, Frank. Principles of random walk. The University Series in Higher Mathematics D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London 1964 xi+406 pp.