Electronic Journal of Probability

On the internal distance in the interlacement set

Jiří Černý and Serguei Popov

Full-text: Open access

Abstract

We prove a shape theorem for the internal (graph) distance on the interlacement set $\mathcal{I}^u$ of the random interlacement model on $\mathbb Z^d$, $d\ge 3$. We provide large deviation estimates for the internal distance of distant points in this set, and use these estimates to study the internal distance on the range of a simple random walk on a discrete torus.

Article information

Source
Electron. J. Probab., Volume 17 (2012), paper no. 29, 25 pp.

Dates
Accepted: 12 April 2012
First available in Project Euclid: 4 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1465062351

Digital Object Identifier
doi:10.1214/EJP.v17-1936

Mathematical Reviews number (MathSciNet)
MR2915665

Zentralblatt MATH identifier
1245.60090

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B43: Percolation [See also 60K35] 60G50: Sums of independent random variables; random walks

Keywords
Random interlacement Internal distance Shape theorem Simple random walk Capacity

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Černý, Jiří; Popov, Serguei. On the internal distance in the interlacement set. Electron. J. Probab. 17 (2012), paper no. 29, 25 pp. doi:10.1214/EJP.v17-1936. https://projecteuclid.org/euclid.ejp/1465062351


Export citation

References

  • Alves, O. S. M.; Machado, F. P.; Popov, S. Yu. The shape theorem for the frog model. Ann. Appl. Probab. 12 (2002), no. 2, 533–546.
  • Antal, Peter; Pisztora, Agoston. On the chemical distance for supercritical Bernoulli percolation. Ann. Probab. 24 (1996), no. 2, 1036–1048.
  • Lawler, Gregory F. Intersections of random walks. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2.
  • Liggett, T. M.; Schonmann, R. H.; Stacey, A. M. Domination by product measures. Ann. Probab. 25 (1997), no. 1, 71–95.
  • Liggett, Thomas M. An improved subadditive ergodic theorem. Ann. Probab. 13 (1985), no. 4, 1279–1285.
  • Nagaev, S. V. Large deviations of sums of independent random variables. Ann. Probab. 7 (1979), no. 5, 745–789.
  • Procaccia, Eviatar B.; Tykesson, Johan. Geometry of the random interlacement. Electron. Commun. Probab. 16 (2011), 528–544.
  • Ráth, Balázs; Sapozhnikov, Artëm. The effect of small quenched noise on connectivity properties of random interlacements, arXiv:1109.5086, 2011
  • Ráth, Balázs; Sapozhnikov, Artëm. On the transience of random interlacements. Electron. Commun. Probab. 16 (2011), 379–391.
  • Balázs Ráth and Artëm Sapozhnikov, Connectivity properties of random interlacement and intersection of random walks, ALEA Lat. Am. J. Probab. Math. Stat. 9 (2012), 67–83.
  • Shellef, Eric. On the range of a random walk in a torus, arXiv:1007.1401, 2010.
  • Sznitman, Alain-Sol. Vacant set of random interlacements and percolation. Ann. of Math. (2) 171 (2010), no. 3, 2039–2087.
  • Teixeira, Augusto; Windisch, David. On the fragmentation of a torus by random walk. Comm. Pure Appl. Math. 64 (2011), no. 12, 1599–1646.