Electronic Journal of Probability

Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?

Matti Vihola

Full-text: Open access


The Adaptive Metropolis (AM) algorithm is based on the symmetric random-walk Metropolis algorithm. The proposal distribution has the following time-dependent covariance matrix, at step $n+1$<em></em>, $S_n=\mathrm{Cov}(X_1,\ldots,X_n)+\varepsilon I$,<em></em> that is, the sample covariance matrix of the history of the chain plus a (small) constant $\varepsilon&gt;0$<em> </em> multiple of the identity matrix $I$<em> </em>. The lower bound on the eigenvalues of <em>$S_n$</em> induced by the factor $\varepsilon I$<em></em> is theoretically convenient, but practically cumbersome, as a good value for the parameter <em>$\varepsilon$</em> may not always be easy to choose. This article considers variants of the AM algorithm that do not explicitly bound the eigenvalues of <em>$S_n$</em> away from zero. The behaviour of <em>$S_n$</em> is studied in detail, indicating that the eigenvalues of $S_n$<em> </em> do not tend to collapse to zero in general. In dimension one, it is shown that $S_n$<em></em> is bounded away from zero if the logarithmic target density is uniformly continuous. For a modification of the AM algorithm including an additional fixed component in the proposal distribution, the eigenvalues of <em>$S_n$</em> are shown to stay away from zero with a practically non-restrictive condition. This result implies a strong law of large numbers for super-exponentially decaying target distributions with regular contours.

Article information

Electron. J. Probab. Volume 16 (2011), paper no. 2, 45-75.

Accepted: 2 January 2011
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 65C40: Computational Markov chains
Secondary: 60J27: Continuous-time Markov processes on discrete state spaces 93E15: Stochastic stability 93E35: Stochastic learning and adaptive control

adaptive Markov chain Monte Carlo Metropolis algorithm stability stochastic approximation

This work is licensed under a Creative Commons Attribution 3.0 License.


Vihola, Matti. Can the Adaptive Metropolis Algorithm Collapse Without the Covariance Lower Bound?. Electron. J. Probab. 16 (2011), paper no. 2, 45--75. doi:10.1214/EJP.v16-840. https://projecteuclid.org/euclid.ejp/1464820171.

Export citation


  • Andrieu, Christophe; Moulines, Éric. On the ergodicity properties of some adaptive MCMC algorithms. Ann. Appl. Probab. 16 (2006), no. 3, 1462–1505.
  • Andrieu, Christophe; Robert, Christian. Controlled MCMC for optimal sampling. Technical Report Ceremade 0125, Universite Paris Dauphine (2001).
  • Andrieu, Christophe; Thoms, Johannes. A tutorial on adaptive MCMC. Stat. Comput. 18 (2008), no. 4, 343–373.
  • Atchadé, Yves; Fort, Gersende. Limit theorems for some adaptive MCMC algorithms with subgeometric kernels. Bernoulli 16 (2010), no. 1, 116–154. (Review)
  • Atchadé, Yves; Rosenthal, Jeffrey. On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 (2005), no. 5, 815-828.
  • Athreya, K. B.; Ney, P. A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc. 245 (1978), 493–501.
  • Bai, Yan; Roberts, Gareth; Rosenthal, Jeffrey. On the containment condition for adaptive Markov chain Monte Carlo algorithms. Preprint (2008). Available at this URL.
  • Esseen, Carl-Gustav. On the Kolmogorov-Rogozin inequality for the concentration function. Z. Wahrscheinlichkeitstheorie verw. Gebiete 5 (1966), no. 3, 210-216.
  • Haario, Heikki; Saksman, Eero; Tamminen Johanna. An adaptive Metropolis algorithm. Bernoulli 7 (2001), no. 2, 223-242.
  • Hall, P.; Heyde, C. C. Martingale limit theory and its application. Probability and Mathematical Statistics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. xii+308 pp. ISBN: 0-12-319350-8
  • Jarner, Søren Fiig; Hansen, Ernst. Geometric ergodicity of Metropolis algorithms. Stochastic Process. Appl. 85 (2000), no. 2, 341–361.
  • Nummelin, Esa. A splitting technique for Harris recurrent Markov chains. Z. Wahrscheinlichkeitstheorie verw. Gebiete 43 (1978), no. 3, 309-318.
  • Roberts, Gareth O.; Rosenthal, Jeffrey S. General state space Markov chains and MCMC algorithms. Probab. Surv. 1 (2004), 20–71 (electronic).
  • Roberts, Gareth O.; Rosenthal, Jeffrey S. Coupling and ergodicity of adaptive Markov chain Monte Carlo algorithms. J. Appl. Probab., 44 (2007), no. 2, 458-475.
  • Roberts, Gareth O.; Rosenthal, Jeffrey S. Examples of adaptive MCMC. J. Comput. Graph. Statist. 18 (2009), no. 2, 349-367.
  • Rogozin, B. A. An estimate for concentration functions. Theory Probab. Appl. 6 (1961), no. 1, 94-97.
  • Saksman, Eero; Vihola, Matti. On the ergodicity of the adaptive Metropolis algorithm on unbounded domains. Ann. Appl. Probab. 20 (2010), no. 6, 2178-2203.
  • Vihola, Matti. On the stability and ergodicity of an adaptive scaling Metropolis algorithm. Preprint (2009), arXiv:0903.4061v2