Electronic Journal of Probability

Plaquettes, Spheres, and Entanglement

Geoffrey Grimmett and Alexander Holroyd

Full-text: Open access

Abstract

The high-density plaquette percolation model in $d$ dimensions contains a surface that is homeomorphic to the $(d-1)$-sphere and encloses the origin. This is proved by a path-counting argument in a dual model. When $d=3$, this permits an improved lower bound on the critical point $p_e$ of entanglement percolation, namely $p_e\geq \mu^{-2}$ where $\mu$ is the connective constant for self-avoiding walks on $\mathbb{Z}^3$. Furthermore, when the edge density $p$ is below this bound, the radius of the entanglement cluster containing the origin has an exponentially decaying tail.

Article information

Source
Electron. J. Probab., Volume 15 (2010), paper no. 45, 1415-1428.

Dates
Accepted: 19 September 2010
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819830

Digital Object Identifier
doi:10.1214/EJP.v15-804

Mathematical Reviews number (MathSciNet)
MR2721052

Zentralblatt MATH identifier
1229.60107

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]
Secondary: 82B20: Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs

Keywords
entanglement percolation random sphere

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Grimmett, Geoffrey; Holroyd, Alexander. Plaquettes, Spheres, and Entanglement. Electron. J. Probab. 15 (2010), paper no. 45, 1415--1428. doi:10.1214/EJP.v15-804. https://projecteuclid.org/euclid.ejp/1464819830


Export citation

References

  • Aizenman, Michael; Barsky, David J. Sharpness of the phase transition in percolation models. Comm. Math. Phys. 108 (1987), no. 3, 489–526.
  • Aizenman, M.; Chayes, J. T.; Chayes, L.; Fröhlich, J.; Russo, L. On a sharp transition from area law to perimeter law in a system of random surfaces. Comm. Math. Phys. 92 (1983), no. 1, 19–69.
  • Aizenman, Michael; Grimmett, Geoffrey. Strict monotonicity for critical points in percolation and ferromagnetic models. J. Statist. Phys. 63 (1991), no. 5-6, 817–835.
  • Atapour, Mahshid; Madras, Neal. On the number of entangled clusters. J. Stat. Phys. 139 (2010), no. 1, 1–26.
  • Barsky, David J.; Grimmett, Geoffrey R.; Newman, Charles M. Percolation in half-spaces: equality of critical densities and continuity of the percolation probability. Probab. Theory Related Fields 90 (1991), no. 1, 111–148.
  • Bezuidenhout, Carol; Grimmett, Geoffrey. The critical contact process dies out. Ann. Probab. 18 (1990), no. 4, 1462–1482.
  • Dirr, N.; Dondl, P. W.; Grimmett, G. R.; Holroyd, A. E.; Scheutzow, M. Lipschitz percolation. Electron. Commun. Probab. 15 (2010), 14–21.
  • Grimmett, Geoffrey. Percolation. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 321. Springer-Verlag, Berlin, 1999. xiv+444 pp. ISBN: 3-540-64902-6
  • Grimmett, Geoffrey; Hiemer, Philipp. Directed percolation and random walk. In and out of equilibrium (Mambucaba, 2000), 273–297, Progr. Probab., 51, Birkhäuser Boston, Boston, MA, 2002.
  • Grimmett, Geoffrey R.; Holroyd, Alexander E. Entanglement in percolation. Proc. London Math. Soc. (3) 81 (2000), no. 2, 485–512.
  • Grimmett, Geoffrey R.; Holroyd, Alexander E. Geometry of Lipschitz percolation. Preprint, arXiv:1007.3762 (2010).
  • Grimmett, G. R.; Marstrand, J. M. The supercritical phase of percolation is well behaved. Proc. Roy. Soc. London Ser. A 430 (1990), no. 1879, 439–457.
  • Häggström, Olle. Uniqueness of the infinite entangled component in three-dimensional bond percolation. Ann. Probab. 29 (2001), no. 1, 127–136.
  • Holroyd, Alexander E. Existence of a phase transition for entanglement percolation. Math. Proc. Cambridge Philos. Soc. 129 (2000), no. 2, 231–251.
  • Holroyd, Alexander E. Entanglement and rigidity in percolation models. In and out of equilibrium (Mambucaba, 2000), 299–307, Progr. Probab., 51, Birkhäuser Boston, Boston, MA, 2002.
  • Holroyd, Alexander E. Inequalities in entanglement percolation. J. Statist. Phys. 109 (2002), no. 1-2, 317–323.
  • Kantor, Yacov; Hassold, Gregory N. Topological entanglements in the percolation problem. Phys. Rev. Lett. 60 (1988), no. 15, 1457–1460.
  • Menʹshikov, M. V. Coincidence of critical points in percolation problems. (Russian) Dokl. Akad. Nauk SSSR 288 (1986), no. 6, 1308–1311.
  • Menʹshikov, M. V.; Molchanov, S. A.; Sidorenko, A. F. Percolation theory and some applications. (Russian) Translated in J. Soviet Math. 42 (1988), no. 4, 1766–1810. Itogi Nauki i Tekhniki, Probability theory. Mathematical statistics. Theoretical cybernetics, Vol. 24 (Russian), 53–110, i, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986.
  • Pönitz, André; Tittmann, Peter. Improved upper bounds for self-avoiding walks in $Zsp d$. Electron. J. Combin. 7 (2000), Research Paper 21, 10 pp. (electronic).