Electronic Journal of Probability

On the domination of a random walk on a discrete cylinder by random interlacements

Alain-Sol Sznitman

Full-text: Open access

Abstract

We consider simple random walk on a discrete cylinder with base a large $d$-dimensional torus of side-length $N$, when $d$ is two or more. We develop a stochastic domination control on the local picture left by the random walk in boxes of side-length almost of order $N$, at certain random times comparable to the square of the number of sites in the base. We show a domination control in terms of the trace left in similar boxes by random interlacements in the infinite $(d+1)$-dimensional cubic lattice at a suitably adjusted level. As an application we derive a lower bound on the disconnection time of the discrete cylinder, which as a by-product shows the tightness of the laws of the ratio of the square of the number of sites in the base to the disconnection time. This fact had previously only been established when $d$ is at least 17.

Article information

Source
Electron. J. Probab., Volume 14 (2009), paper no. 56, 1670-1704.

Dates
Accepted: 25 July 2009
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819517

Digital Object Identifier
doi:10.1214/EJP.v14-679

Mathematical Reviews number (MathSciNet)
MR2525107

Zentralblatt MATH identifier
1196.60170

Subjects
Primary: 60G50: Sums of independent random variables; random walks
Secondary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C41: Dynamics of random walks, random surfaces, lattice animals, etc. [See also 60G50]

Keywords
disconnection random walks random interlacements discrete cylinders

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Sznitman, Alain-Sol. On the domination of a random walk on a discrete cylinder by random interlacements. Electron. J. Probab. 14 (2009), paper no. 56, 1670--1704. doi:10.1214/EJP.v14-679. https://projecteuclid.org/euclid.ejp/1464819517


Export citation

References

  • Borodin, A. N. Distribution of integral functionals of the Brownian motion process.(Russian) Problems of the theory of probability distribution, VII. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 119 (1982), 19–38, 237–238, 244.
  • Csáki, E.; Révész, P. Strong invariance for local times. Z. Wahrsch. Verw. Gebiete 62 (1983), no. 2, 263–278.
  • Dembo, Amir; Sznitman, Alain-Sol. A lower bound on the disconnection time of a discrete cylinder. In and out of equilibrium. 2, 211–227, Progr. Probab., 60, Birkhäuser, Basel, 2008.
  • Dembo, Amir and Zeitouni, Ofer. Large deviations techniques and applications. Springer, Berlin, 2nd edition, 1998.
  • Eisenbaum, N. Un théorème de Ray-Knight lié au supremum des temps locaux browniens.(French) [A Ray-Knight theorem associated with the supremum of Brownian local times] Probab. Theory Related Fields 87 (1990), no. 1, 79–95.
  • Ikeda, Nobuyuki; Watanabe, Shinzo. Stochastic differential equations and diffusion processes.Second edition.North-Holland Mathematical Library, 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo, 1989. xvi+555 pp. ISBN: 0-444-87378-3
  • Kesten, Harry. Percolation theory for mathematicians.Progress in Probability and Statistics, 2. Birkhäuser, Boston, Mass., 1982. iv+423 pp. ISBN: 3-7643-3107-0
  • Lawler, Gregory F. Intersections of random walks.Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991. 219 pp. ISBN: 0-8176-3557-2
  • Liggett, Thomas M. Interacting particle systems.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Lindvall, Torgny. Lectures on the coupling method.Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. A Wiley-Interscience Publication.John Wiley & Sons, Inc., New York, 1992. xiv+257 pp. ISBN: 0-471-54025-0
  • Sidoravicius, Vladas; Sznitman, Alain-Sol. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009), no. 6, 831–858.
  • V. Sidoravicius and A.S. Sznitman. Connectivity bounds for the vacant set of random interlacements. Preprint, also available at: http://www.math.ethz.ch/u/sznitman/preprints.
  • A.S. Sznitman. Vacant set of random interlacements and percolation. {\em Ann. Math., in press, also available at: http://www.math.ethz.ch/u/sznitman/preprints.
  • A.S. Sznitman. Random walks on discrete cylinders and random interlacements. Probab. Theory Relat. Fields, 145:143–174, 2009.
  • A.S. Sznitman. Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann Probab., in press, also available at: http://www.math.ethz.ch/u/sznitman/preprints
  • Teixeira, Augusto. On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19 (2009), no. 1, 454–466.
  • A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab., in press, also available at arXiv:0907.0316.
  • A. Teixeira. On the size of a finite vacant cluster of random interlacements with small intensity. Preprint, also available at: http://www.math.ethz.ch/u/sznitman/preprints
  • Windisch, David. Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008), 140–150.
  • Windisch, David. Random walks on discrete cylinders with large bases and random interlacements. Ann Probab., in press, also available at arXiv:0907.1627.