Electronic Journal of Probability

Central Limit Theorem for a Class of Linear Systems

Yukio Nagahata and Nobuo Yoshida

Full-text: Open access


We consider a class of interacting particle systems with values in $[0,∞)^{\mathbb{Z}^d}$, of which the binary contact path process is an example. For $d \geq 3$ and under a certain square integrability condition on the total number of the particles, we prove a central limit theorem for the density of the particles, together with upper bounds for the density of the most populated site and the replica overlap.

Article information

Electron. J. Probab., Volume 14 (2009), paper no. 34, 960-977.

Accepted: 5 May 2009
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

central limit theorem linear systems binary contact path process diffusive behavior delocalization

This work is licensed under aCreative Commons Attribution 3.0 License.


Nagahata, Yukio; Yoshida, Nobuo. Central Limit Theorem for a Class of Linear Systems. Electron. J. Probab. 14 (2009), paper no. 34, 960--977. doi:10.1214/EJP.v14-644. https://projecteuclid.org/euclid.ejp/1464819495

Export citation


  • Comets, F., Yoshida, N.: Some New Results on Brownian Directed Polymers in Random Environment, RIMS Kokyuroku 1386, 50–66, available at authors' web pages.
  • Chung, Kai Lai; Zhao, Zhong Xin. From Brownian motion to Schrödinger's equation.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 312. Springer-Verlag, Berlin, 1995. xii+287 pp. ISBN: 3-540-57030-6
  • Davies, E. B. Heat kernels and spectral theory.Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1989. x+197 pp. ISBN: 0-521-36136-2
  • Griffeath, David. The binary contact path process. Ann. Probab. 11 (1983), no. 3, 692–705.
  • Liggett, Thomas M. Interacting particle systems.Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 276. Springer-Verlag, New York, 1985. xv+488 pp. ISBN: 0-387-96069-4
  • Nakashima, M.: The Central Limit Theorem for Linear Stochastic Evolutions, preprint (2008), to appear in J. Math. Kyoto Univ.
  • Spitzer, Frank. Principles of random walks.Second edition.Graduate Texts in Mathematics, Vol. 34.Springer-Verlag, New York-Heidelberg, 1976. xiii+408 pp.
  • Sznitman, Alain-Sol. Brownian motion, obstacles and random media.Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1998. xvi+353 pp. ISBN: 3-540-64554-3
  • Woess, Wolfgang. Random walks on infinite graphs and groups.Cambridge Tracts in Mathematics, 138. Cambridge University Press, Cambridge, 2000. xii+334 pp. ISBN: 0-521-55292-3
  • Yoshida, Nobuo. Central limit theorem for branching random walks in random environment. Ann. Appl. Probab. 18 (2008), no. 4, 1619–1635. (Review)
  • Yoshida, Nobuo. Phase transitions for the growth rate of linear stochastic evolutions. J. Stat. Phys. 133 (2008), no. 6, 1033–1058.