Electronic Journal of Probability

Intermittence and nonlinear parabolic stochastic partial differential equations

Mohammud Foondun and Davar Khoshnevisan

Full-text: Open access


We consider nonlinear parabolic SPDEs of the form $\partial_t u={\cal L} u + \sigma(u)\dot w$, where $\dot w$ denotes space-time white noise, $\sigma:R\to R$ is [globally] Lipschitz continuous, and $\cal L$ is the $L^2$-generator of a L'evy process. We present precise criteria for existence as well as uniqueness of solutions. More significantly, we prove that these solutions grow in time with at most a precise exponential rate. We establish also that when $\sigma$ is globally Lipschitz and asymptotically sublinear, the solution to the nonlinear heat equation is ``weakly intermittent,'' provided that the symmetrization of $\cal L$ is recurrent and the initial data is sufficiently large. Among other things, our results lead to general formulas for the upper second-moment Liapounov exponent of the parabolic Anderson model for $\cal L$ in dimension $(1+1)$. When ${\cal L}=\kappa\partial_{xx}$ for $\kappa>0$, these formulas agree with the earlier results of statistical physics (Kardar (1987), Krug and Spohn (1991), Lieb and Liniger (1963)), and also probability theory (Bertini and Cancrini (1995), Carmona and Molchanov (1994)) in the two exactly-solvable cases. That is when $u_0=\delta_0$ or $u_0\equiv 1$; in those cases the moments of the solution to the SPDE can be computed (Bertini and Cancrini (1995)).

Article information

Electron. J. Probab. Volume 14 (2009), paper no. 21, 548-568.

Accepted: 24 February 2009
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60H15: Stochastic partial differential equations [See also 35R60]
Secondary: 82B44: Disordered systems (random Ising models, random Schrödinger operators, etc.)

Stochastic partial differential equations Levy processes

This work is licensed under a Creative Commons Attribution 3.0 License.


Foondun, Mohammud; Khoshnevisan, Davar. Intermittence and nonlinear parabolic stochastic partial differential equations. Electron. J. Probab. 14 (2009), paper no. 21, 548--568. doi:10.1214/EJP.v14-614. https://projecteuclid.org/euclid.ejp/1464819482

Export citation


  • Bertini, Lorenzo; Cancrini, Nicoletta. The stochastic heat equation: Feynman-Kac formula and intermittence. J. Statist. Phys. 78 (1995), no. 5-6, 1377–1401.
  • Bertoin, Jean. Lévy processes.Cambridge Tracts in Mathematics, 121. Cambridge University Press, Cambridge, 1996. x+265 pp. ISBN: 0-521-56243-0
  • Brzeźniak, Zdzisław; van Neerven, Jan. Space-time regularity for linear stochastic evolution equations driven by spatially homogeneous noise. J. Math. Kyoto Univ. 43 (2003), no. 2, 261–303.
  • Carlen, Eric; Krée, Paul. $Lsp p$ estimates on iterated stochastic integrals. Ann. Probab. 19 (1991), no. 1, 354–368.
  • Carmona, René A.; Molchanov, S. A. Parabolic Anderson problem and intermittency. Mem. Amer. Math. Soc. 108 (1994), no. 518, viii+125 pp.
  • Carmona, Rene; Koralov, Leonid; Molchanov, Stanislav. Asymptotics for the almost sure Lyapunov exponent for the solution of the parabolic Anderson problem. Random Oper. Stochastic Equations 9 (2001), no. 1, 77–86.
  • Carmona, René A.; Viens, Frederi G. Almost-sure exponential behavior of a stochastic Anderson model with continuous space parameter. Stochastics Stochastics Rep. 62 (1998), no. 3-4, 251–273.
  • Cranston, M.; Molchanov, S. Quenched to annealed transition in the parabolic Anderson problem. Probab. Theory Related Fields 138 (2007), no. 1-2, 177–193.
  • Cranston, M.; Molchanov, S. On phase transitions and limit theorems for homopolymers. Probability and mathematical physics, 97–112, CRM Proc. Lecture Notes, 42, Amer. Math. Soc., Providence, RI, 2007.
  • Cranston, M.; Mountford, T. S.; Shiga, T. Lyapunov exponent for the parabolic Anderson model with Lévy noise. Probab. Theory Related Fields 132 (2005), no. 3, 321–355.
  • Cranston, M.; Mountford, T. S.; Shiga, T. Lyapunov exponents for the parabolic Anderson model. Acta Math. Univ. Comenian. (N.S.) 71 (2002), no. 2, 163–188.
  • Da Prato, Giuseppe. Kolmogorov equations for stochastic PDE's with multiplicative noise. Stochastic analysis and applications, 235–263, Abel Symp., 2, Springer, Berlin, 2007.
  • Da Prato, Giuseppe; Zabczyk, Jerzy. Stochastic equations in infinite dimensions.Encyclopedia of Mathematics and its Applications, 44. Cambridge University Press, Cambridge, 1992. xviii+454 pp. ISBN: 0-521-38529-6
  • Dalang, Robert C. Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999), no. 6, 29 pp. (electronic).
  • Dalang, Robert C.; Mueller, Carl. Some non-linear S.P.D.E.'s that are second order in time. Electron. J. Probab. 8 (2003), no. 1, 21 pp. (electronic).
  • Dalang, Robert C. and Carl Mueller (2008). Intermittency properties in a hyperbolic Anderson problem (preprint).%
  • Davis, Burgess. On the $Lsp{p}$ norms of stochastic integrals and other martingales. Duke Math. J. 43 (1976), no. 4, 697–704.
  • Florescu, Ionut, and Frederi Viens (2006). Sharp estimation for the almost-sure Lyapunov exponent of the Anderson model in continuous space, Probab. Th. Rel. Fields, 135 (4), 603-644.
  • Foondun, Mohammud, Davar Khoshnevisan, and Eulalia Nualart (2007). A local-time correspondence for stochastic partial differential equations (preprint).
  • Gärtner, J.; den Hollander, F. Intermittency in a catalytic random medium. Ann. Probab. 34 (2006), no. 6, 2219–2287.
  • Gärtner, Jürgen; König, Wolfgang. The parabolic Anderson model. Interacting stochastic systems, 153–179, Springer, Berlin, 2005.
  • Gärtner, J.; König, W.; Molchanov, S. A. Almost sure asymptotics for the continuous parabolic Anderson model. Probab. Theory Related Fields 118 (2000), no. 4, 547–573.
  • Gradshteyn, I. S.; Ryzhik, I. M. Table of integrals, series, and products.Fifth edition.CD-ROM version 1.0 for PC, MAC, and UNIX computers.Academic Press, Inc., San Diego, CA, 1996. ISBN: 0-12-294756-8
  • Gruninger, Gabriela, and Wolfgang Konig (2008). Potential confinement property of the parabolic Anderson model (preprint).%
  • Hawkes, J. Local times as stationary processes. From local times to global geometry, control and physics (Coventry, 1984/85), 111–120, Pitman Res. Notes Math. Ser., 150, Longman Sci. Tech., Harlow, 1986.
  • Jacob, N. Pseudo differential operators and Markov processes. Vol. III.Markov processes and applications.Imperial College Press, London, 2005. xxviii+474 pp. ISBN: 1-86094-568-6
  • van der Hofstad, Remco; König, Wolfgang; Mörters, Peter. The universality classes in the parabolic Anderson model. Comm. Math. Phys. 267 (2006), no. 2, 307–353.
  • Kardar, Mehran. Replica Bethe ansatz studies of two-dimensional interfaces with quenched random impurities. Nuclear Phys. B 290 (1987), no. 4, 582–602.
  • bibitem Kardar, Mehran, Giorgio Parisi, and Yi-Cheng Zhang (1986). Dynamic scaling of growing interfaces, emphPhys. Rev. Lett. textbf56it (9), 889–892.%
  • Khoshnevisan, Davar. Probability.Graduate Studies in Mathematics, 80. American Mathematical Society, Providence, RI, 2007. xvi+224 pp. ISBN: 978-0-8218-4215-7; 0-8218-4215-3
  • Konig, Wolfgang, Hubert Lacoin, Peter Morters, and Nadia Sidorova (2008). A two cities theorem for the parabolic Anderson model (preprint).%
  • Krug, J. and H. Spohn (1991). Kinetic roughening of growing surfaces, in: Solids Far From Equilibrium: Growth, Morphology, and Defects (ed.: C. Godreche), Cambridge University Press, Cambridge.%
  • Lieb, Elliott H. and Werner Liniger (1963). Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. (2) 130, 1605–1616.
  • Lunardi, Alessandra. Analytic semigroups and optimal regularity in parabolic problems.Progress in Nonlinear Differential Equations and their Applications, 16. Birkhäuser Verlag, Basel, 1995. xviii+424 pp. ISBN: 3-7643-5172-1
  • Molchanov, Stanislav A. Ideas in the theory of random media. Acta Appl. Math. 22 (1991), no. 2-3, 139–282.
  • Mueller, Carl. On the support of solutions to the heat equation with noise. Stochastics Stochastics Rep. 37 (1991), no. 4, 225–245.
  • Peszat, Szymon; Zabczyk, Jerzy. Nonlinear stochastic wave and heat equations. Probab. Theory Related Fields 116 (2000), no. 3, 421–443.
  • Shiga, Tokuzo. Exponential decay rate of survival probability in a disastrous random environment. Probab. Theory Related Fields 108 (1997), no. 3, 417–439.
  • Walsh, John B. An introduction to stochastic partial differential equations. École d'été de probabilités de Saint-Flour, XIV–-1984, 265–439, Lecture Notes in Math., 1180, Springer, Berlin, 1986.