Electronic Journal of Probability

Parabolic Harnack inequality and local limit theorem for percolation clusters

Ben Hambly and Martin Barlow

Full-text: Open access

Abstract

We consider the random walk on supercritical percolation clusters in $\mathbb{Z}^d$. Previous papers have obtained Gaussian heat kernel bounds, and a.s. invariance principles for this process. We show how this information leads to a parabolic Harnack inequality, a local limit theorem and estimates on the Green's function.

Article information

Source
Electron. J. Probab., Volume 14 (2009), paper no. 1, 1-26.

Dates
Accepted: 7 January 2009
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819462

Digital Object Identifier
doi:10.1214/EJP.v14-587

Mathematical Reviews number (MathSciNet)
MR2471657

Zentralblatt MATH identifier
1192.60107

Subjects
Primary: 60G50: Sums of independent random variables; random walks
Secondary: 31B05: Harmonic, subharmonic, superharmonic functions

Keywords
Percolation random walk Harnack inequality local limit theorem

Rights
This work is licensed under a Creative Commons Attribution 3.0 License.

Citation

Hambly, Ben; Barlow, Martin. Parabolic Harnack inequality and local limit theorem for percolation clusters. Electron. J. Probab. 14 (2009), paper no. 1, 1--26. doi:10.1214/EJP.v14-587. https://projecteuclid.org/euclid.ejp/1464819462


Export citation

References

  • P. Antal, A. Pisztora. On the chemical distance for supercritical bernoulli percolation. Ann. Probab. 24 (1996), 1036–1048.
  • M.T. Barlow. Random walks on supercritical percolation clusters. Ann. Probab. 32 (2004), 3024–3084.
  • M.T. Barlow, R.F. Bass, Z.-Q. Chen, M. Kassmann. Non-local Dirichlet Forms and Symmetric Jump Processes. To appear Trans. Amer. Math. Soc.
  • M.T. Barlow, R.F. Bass, T. Kumagai. Parabolic Harnack inequality and heat kernel estimates for random walks with long range jumps. To appear Math. Zeitschrift.
  • R.F. Bass. On Aronsen's upper bounds for heat kernels. Bull. London Math. Soc. 34 (2002), 415–419.
  • I. Benjamini, R. Lyons, O. Schramm. Percolation perturbations in potential theory and random walks. In: Random walks and discrete potential theory (Cortona, 1997), 56–84, Sympos. Math., XXXIX, Cambridge Univ. Press, Cambridge, 1999.
  • N. Berger, M. Biskup. Quenched invariance principle for simple random walk on percolation clusters. Probab. Theory Rel. Fields 137 (2007), 83–120.
  • N. Berger, M. Biskup, C.E. Hoffman, G. Kozma. Anomalous heat-kernel decay for random walk amoung bounded random conductances. Ann. Inst. Henri Poincar'e. 44 (2008), 374-392.
  • M. Biskup, T.M. Prescott. Functional CLT for random walk among bounded random conductances. Electron. J. Probab. 12 (2007), 1323–1348
  • R.M Blumenthal and R.K. Getoor. Markov Processes and Potential Theory. Academic Press, Reading, MA, 1968.
  • O. Couronn'e, R.J. Messikh. Surface order large deviations for 2D FK-percolation and Potts models. Stoch. Proc. Appl. 113 (2004), 81–99.
  • P.G. de Gennes. La percolation: un concept unificateur. La Recherche 7 (1976), 919–927.
  • T. Delmotte. Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Math. Iberoamericana 15 (1999), 181–232.
  • A. De Masi, P.A. Ferrari, S. Goldstein, W.D. Wick. An invariance principle for reversible Markov processes. Applications to random motions in random environments. J. Statist. Phys. 55 (1989), 787–855.
  • J.-D. Deuschel, A. Pisztora. Surface order large deviations for high-density percolation. Probab. Theory Related Fields 104 (1996), 467–482.
  • E.B. Fabes, D.W. Stroock. A new proof of Moser's parabolic Harnack inequality via the old ideas of Nash. Arch. Mech. Rat. Anal. 96 (1986), 327–338.
  • W. Feller. An introduction to probability theory and its applications. Vol. II}. 2nd ed. Wiley, New York-London-Sydney, 1971.
  • G.R. Grimmett. Percolation. (2nd edition). Springer, 1999.
  • A. Maritan. About diffusion processes in disordered systems. J. Phys. A: Math. Gen. 21 (1988) 859–863.
  • P. Mathieu, E. Remy. Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab. 32 (2004), 100–128.
  • P. Mathieu, A. Piatnitski. Quenched invariance principles for random walks on percolation clusters. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 (2007), 2287–2307.
  • P. Mathieu. Quenched invariance principles for random walks with random conductances. J. of Stat. Phys., 130, (2008) 1025-1046.
  • J. Nash. Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80 (1958), 931–954.
  • L. Saloff-Coste. Aspects of Sobolev-type inequalities. Cambridge Univ. Press 2002.
  • V. Sidoravicius and A.-S. Sznitman. Quenched invariance principles for walks on clusters of percolation or among random conductances. Probab. Theory Rel. Fields 129 (2004), 219–244.