Electronic Journal of Probability

Radius and profile of random planar maps with faces of arbitrary degrees

Grégory Miermont and Mathilde Weill

Full-text: Open access

Abstract

We prove some asymptotic results for the radius and the profile of large random planar maps with faces of arbitrary degrees. Using a bijection due to Bouttier, Di Francesco & Guitter between rooted planar maps and certain four-type trees with positive labels, we derive our results from a conditional limit theorem for four-type spatial Galton-Watson trees.

Article information

Source
Electron. J. Probab., Volume 13 (2008), paper no. 4, 79-106.

Dates
Accepted: 20 January 2008
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464819077

Digital Object Identifier
doi:10.1214/EJP.v13-478

Mathematical Reviews number (MathSciNet)
MR2375600

Zentralblatt MATH identifier
1190.60024

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 60J80: Branching processes (Galton-Watson, birth-and-death, etc.) 05J30

Keywords
Random planar map invariance principle multitype spatial Galton-Watson tree Brownian snake

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Miermont, Grégory; Weill, Mathilde. Radius and profile of random planar maps with faces of arbitrary degrees. Electron. J. Probab. 13 (2008), paper no. 4, 79--106. doi:10.1214/EJP.v13-478. https://projecteuclid.org/euclid.ejp/1464819077


Export citation

References

  • D. Aldous. The continuum random tree. I. Ann. Probab. 19 (1991), no. 1, 1–28.
  • J. Ambjørn, B. Durhuus, T. Jonsson. Quantum geometry. A statistical field theory approach. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge, 1997. xiv+363 pp.
  • J. Bouttier, P. Di Francesco, E. Guitter. Planar maps as labeled mobiles. Electron. J. Combin. 11 (2004), no. 1, Research Paper 69, 27 pp. (electronic).
  • P. Chassaing, G. Schaeffer. Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 (2004), no. 2, 161–212.
  • R. Cori, B. Vauquelin. Planar maps are well labeled trees. Canad. J. Math. 33 (1981), no. 5, 1023–1042.
  • M. Gromov. Metric structures for Riemannian and non-Riemannian spaces. Progress in Mathematics, 152. Birkhäuser Boston, Inc., Boston, MA, 1999. xx+585 pp.
  • J.-F. Le Gall. Spatial branching processes, random snakes and partial differential equations. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, 1999. x+163 pp.
  • J.-F. Le Gall. Random trees and applications. Probab. Surv. 2 (2005), 245–311 (electronic).
  • J.-F. Le Gall. A conditional limit theorem for tree-indexed random walk. Stochastic Process. Appl. 116 (2006), no. 4, 539–567.
  • J.-F. Le Gall. The topological structure of scaling limits of large planar maps. Invent. Math. 169 (2007), no. 3, 621–670.
  • J.-F. Le Gall, Y. Le Jan. Branching processes in L?©vy processes: the exploration process. Ann. Probab. 26 (1998), no. 1, 213–252.
  • J.-F. Le Gall, F. Paulin. Scaling limits of bipartite planar maps are homeomorphic to the 2-sphere. To appear in Geometric and Functional Analysis (2008). Number not available.
  • J.-F. Le Gall, M. Weill. Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006), no. 4, 455–489.
  • J.-F. Marckert, G. Miermont. Invariance principles for random bipartite planar maps. Ann. Probab. 35 (2007), no. 5, 1642–1705.
  • J.-F. Marckert, A. Mokkadem. Limit of normalized quadrangulations: the Brownian map. Ann. Probab. 34 (2006), no.6, 2144–2202.
  • G. Miermont. Invariance principles for spatial multitype Galton-Watson trees. To appear in Ann. Inst. H. Poincaré Probab. Statist. (2008). number not available.
  • G. Miermont. An invariance principle for random planar maps, in Fourth Colloquium on Mathematics and Computer Sciences CMCS'06 (Nancy, France), Discrete Math. Theor. Comput. Sci. Proc., AG, Nancy, pp. 39–58 (electronic). Errata on www.math.u-psud.fr/~miermont. number not available.
  • G. Schaeffer. Conjugaison d'arbres et cartes combinatoires aléatoires. PhD thesis, Université Bordeaux I. number not available.
  • M. Weill. Asymptotics for rooted bipartite planar maps and scaling limits of two-type spatial trees. Electron. J. Probab. 12 (2007), no. 31, 887–925 (electronic)..