Electronic Journal of Probability

Isoperimetry between exponential and Gaussian

Franck Barthe, Patrick Cattiaux, and Cyril Roberto

Full-text: Open access


We study the isoperimetric problem for product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate half-spaces are approximate solutions of the isoperimetric problem

Article information

Electron. J. Probab., Volume 12 (2007), paper no. 44, 1212-1237.

Accepted: 23 May 2007
First available in Project Euclid: 1 June 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 26D10: Inequalities involving derivatives and differential and integral operators
Secondary: 47D07: Markov semigroups and applications to diffusion processes {For Markov processes, see 60Jxx} 60E15: Inequalities; stochastic orderings

Isoperimetry Super-Poincaré inequality

This work is licensed under aCreative Commons Attribution 3.0 License.


Barthe, Franck; Cattiaux, Patrick; Roberto, Cyril. Isoperimetry between exponential and Gaussian. Electron. J. Probab. 12 (2007), paper no. 44, 1212--1237. doi:10.1214/EJP.v12-441. https://projecteuclid.org/euclid.ejp/1464818515

Export citation


  • Aida, Shigeki. Uniform positivity improving property, Sobolev inequalities, and spectral gaps. J. Funct. Anal. 158 (1998), no. 1, 152–185.
  • C.Ane, S.Blachere, D.Chafai, P.Fougeres, I.Gentil, F.Malrieu, C.Roberto, and G.Scheffer. Sur les inegalites de Sobolev logarithmiques., volume 10 of Panoramas et Syntheses. S.M.F., Paris, 2000.
  • Bakry, D.; Émery, Michel. Diffusions hypercontractives. (French) [Hypercontractive diffusions] Séminaire de probabilités, XIX, 1983/84, 177–206, Lecture Notes in Math., 1123, Springer, Berlin, 1985.
  • Bakry, D.; Ledoux, M. Lévy-Gromov's isoperimetric inequality for an infinite-dimensional diffusion generator. Invent. Math. 123 (1996), no. 2, 259–281.
  • Barthe, Franck. Levels of concentration between exponential and Gaussian. Ann. Fac. Sci. Toulouse Math. (6) 10 (2001), no. 3, 393–404.
  • Barthe, F. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002), no. 1, 32–55.
  • Barthe, F. Infinite dimensional isoperimetric inequalities in product spaces with the supremum distance. J. Theoret. Probab. 17 (2004), no. 2, 293–308.
  • F.Barthe, P.Cattiaux, and C.Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and application to isoperimetry. Revista Mat. Iberoamericana, To appear.
  • Barthe, F.; Roberto, C. Sobolev inequalities for probability measures on the real line. Dedicated to Professor Aleksander Pelczynski on the occasion of his 70th birthday (Polish). Studia Math. 159 (2003), no. 3, 481–497.
  • Bertini, Lorenzo; Zegarlinski, Bogusław. Coercive inequalities for Gibbs measures. J. Funct. Anal. 162 (1999), no. 2, 257–286.
  • Bobkov, S. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996), no. 1, 35–48.
  • Bobkov, S. G. Isoperimetric problem for uniform enlargement. Studia Math. 123 (1997), no. 1, 81–95.
  • Bobkov, S. G.; Götze, F. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999), no. 1, 1–28.
  • Bobkov, S. G.; Udre, K. Characterization of Gaussian measures in terms of the isoperimetric property of half-spaces. (Russian) Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 228 (1996), Veroyatn. i Stat. 1, 31–38, 356; translation in J. Math. Sci. (New York) 93 (1999), no. 3, 270–275
  • Bobkov, S. G.; Houdré, C. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997), no. 1, 184–205.
  • Bobkov, Sergey G.; Houdré, Christian. Weak dimension-free concentration of measure. Bernoulli 6 (2000), no. 4, 621–632.
  • Bobkov, Serguei G.; Houdré, Christian. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111 pp.
  • Bobkov, S. G.; Zegarlinski, B. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005), no. 829, x+69 pp.
  • Borell, Christer. The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30 (1975), no. 2, 207–216.
  • Borell, Christer. Intrinsic bounds for some real-valued stationary random functions. Probability in Banach spaces, V (Medford, Mass., 1984), 72–95, Lecture Notes in Math., 1153, Springer, Berlin, 1985.
  • Cattiaux, Patrick. Hypercontractivity for perturbed diffusion semigroups. Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), no. 4, 609–628.
  • Davies, E. B. Heat kernels and spectral theory. Cambridge Tracts in Mathematics, 92. Cambridge University Press, Cambridge, 1989. x+197 pp. ISBN: 0-521-36136-2
  • Federer, Herbert. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153 Springer-Verlag New York Inc., New York 1969 xiv+676 pp.
  • Fougères, Pierre. Hypercontractivité et isopérimétrie gaussienne. Applications aux systèmes de spins. (French) [Hypercontractivity and Gaussian isoperimetry. Applications to spin systems] Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 5, 647–689.
  • Gong, Fu-Zhou; Wang, Feng-Yu. Functional inequalities for uniformly integrable semigroups and application to essential spectrums. Forum Math. 14 (2002), no. 2, 293–313.
  • Helffer, Bernard. Semiclassical analysis, Witten Laplacians, and statistical mechanics. Series in Partial Differential Equations and Applications, 1. World Scientific Publishing Co., Inc., River Edge, NJ, 2002. x+179 pp. ISBN: 981-238-098-1
  • Holley, Richard; Stroock, Daniel. Logarithmic Sobolev inequalities and stochastic Ising models. J. Statist. Phys. 46 (1987), no. 5-6, 1159–1194.
  • Kwapien, S.; Pycia, M.; Schachermayer, W. A proof of conjecture of Bobkov and Houdre. Electron. Comm. Probab. 1 (1996), no. 2, 7–10 (electronic).
  • Latała, R.; Oleszkiewicz, K. Between Sobolev and Poincaré. Geometric aspects of functional analysis, 147–168, Lecture Notes in Math., 1745, Springer, Berlin, 2000.
  • Ledoux, M. A simple analytic proof of an inequality by P. Buser. Proc. Amer. Math. Soc. 121 (1994), no. 3, 951–959.
  • Ledoux, Michel. Concentration of measure and logarithmic Sobolev inequalities. Séminaire de Probabilités, XXXIII, 120–216, Lecture Notes in Math., 1709, Springer, Berlin, 1999.
  • Ledoux, Michel. The concentration of measure phenomenon. Mathematical Surveys and Monographs, 89. American Mathematical Society, Providence, RI, 2001. x+181 pp. ISBN: 0-8218-2864-9
  • V.G. Maz'ja. Sobolev spaces. Springer Series in Soviet Mathematics. Springer, Berlin, 1985.
  • Oleszkiewicz, Krzysztof. On certain characterization of normal distribution. Statist. Probab. Lett. 33 (1997), no. 3, 277–280.
  • Roberto, C.; Zegarliński, B. Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups. J. Funct. Anal. 243 (2007), no. 1, 28–66.
  • Röckner, Michael; Wang, Feng-Yu. Weak Poincaré inequalities and $L\sp 2$-convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001), no. 2, 564–603.
  • Ros, Antonio. The isoperimetric problem. Global theory of minimal surfaces, 175–209, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005.
  • Rothaus, O. S. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities. J. Funct. Anal. 64 (1985), no. 2, 296–313.
  • Sudakov, V. N.; Tirel'son, B. S. Extremal properties of half-spaces for spherically invariant measures. (Russian) Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24, 165.
  • Talagrand, Michel. A new isoperimetric inequality and the concentration of measure phenomenon. Geometric aspects of functional analysis (1989–90), 94–124, Lecture Notes in Math., 1469, Springer, Berlin, 1991.
  • Talagrand, Michel. Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. No. 81 (1995), 73–205.
  • Wang, Feng-Yu. Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000), no. 1, 219–245.
  • Wang, Feng-Yu. A generalization of Poincaré and log-Sobolev inequalities. Potential Anal. 22 (2005), no. 1, 1–15.