Electronic Journal of Probability

Distance Estimates for Poisson Process Approximations of Dependent Thinnings

Dominic Schuhmacher

Full-text: Open access

Abstract

It is well known, that under certain conditions, gradual thinning of a point process on $R^d_+$, accompanied by a contraction of space to compensate for the thinning, leads in the weak limit to a Cox process. In this article, we apply discretization and a result based on Stein's method to give estimates of the Barbour-Brown distance $d_2$ between the distribution of a thinned point process and an approximating Poisson process, and evaluate the estimates in concrete examples. We work in terms of two, somewhat different, thinning models. The main model is based on the usual thinning notion of deleting points independently according to probabilities supplied by a random field. In Section 4, however, we use an alternative thinning model, which can be more straightforward to apply if the thinning is determined by point interactions.

Article information

Source
Electron. J. Probab., Volume 10 (2005), paper no. 5, 165-201.

Dates
Accepted: 28 February 2005
First available in Project Euclid: 1 June 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1464816806

Digital Object Identifier
doi:10.1214/EJP.v10-237

Mathematical Reviews number (MathSciNet)
MR2120242

Zentralblatt MATH identifier
1071.60034

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Schuhmacher, Dominic. Distance Estimates for Poisson Process Approximations of Dependent Thinnings. Electron. J. Probab. 10 (2005), paper no. 5, 165--201. doi:10.1214/EJP.v10-237. https://projecteuclid.org/euclid.ejp/1464816806


Export citation

References

  • Barbour, A.D., Brown, T.C. Stein's method and point process approximation. Stochastic Process. Appl. 43 (1992), 9-31.
  • Barbour, A.D., Holst, L., Janson, S. Poisson Approximation. Oxford University Press, Oxford, 1992.
  • Böker, F., Serfozo, R. Ordered thinnings of point processes and random measures. Stochastic Process. Appl. 15 (1983), 113-132.
  • Brown, T.C. Position dependent and stochastic thinning of point processes. Stochastic Process. Appl. 9 (1979), 189-193.
  • Brown, T.C., Weinberg, G.V., Xia, A. Removing logarithms from Poisson process error bounds. Stochastic Process. Appl. 87 (2000), 149-165.
  • Brown, T.C., Xia, A. On metrics in point process approximation. Stochastics Stochastics Rep. 52 (1995), 247-263.
  • Brown, T.C., Xia, A. Stein's method and birth-death processes. Ann. Probab. 29 (2001), 1373-1403.
  • Daley, D.J., Vere-Jones, D. An Introduction to the Theory of Point Processes. Springer, New York, 1988.
  • Doukhan, P. Mixing. Properties and Examples. Lecture Notes in Statistics, 85. Springer, New York, 1994.
  • Dudley, R.M. Real analysis and probability. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1989.
  • Jagers, P., Lindvall, T. Thinning and rare events in point processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 28 (1974), 89-98.
  • Kallenberg, O. Limits of compound and thinned point processes. J. Appl. Probability 12 (1975), 269-278.
  • Kallenberg, O. Random Measures, 4th ed. Akademie-Verlag, Berlin; Academic Press, London, 1986.
  • Kallenberg, O. Foundations of Modern Probability, 2nd ed., Springer, New York, 2002.
  • Matheron, G. Random sets and integral geometry. Wiley, New York, 1975.
  • Rényi, A. A characterization of Poisson processes (in Hungarian with summaries in English and Russian). Magyar Tud. Akad. Mat. Kutató Int. Közl. 1 (1957), 519-527. MR0094861 Translated in Selected papers of Alfréd Rényi, Vol. 1, ed. Pál Turán, Akadémiai Kiadó, Budapest, 1976.
  • Schuhmacher, D. Upper bounds for spatial point process approximations. To appear in Ann. Appl. Probab. 15 (2005), No. 1B. MR number not yet available. Preprint at http://www.math.unizh.ch/~schumi/papers/sppa.pdf
  • Serfozo, R.F. Compositions, inverses and thinnings of random measures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 37 (1977), 253-265.
  • Serfozo, R.F. Rarefactions of compound point processes. J. Appl. Probability 21 (1984), 710-719.
  • Stoyan, D., Kendall, W.S., Mecke, J. Stochastic geometry and its applications. Wiley, Chichester, 1987.