Electronic Journal of Probability

Excited Random Walk on Trees

Stanislav Volkov

Full-text: Open access


We consider a nearest-neighbor stochastic process on a rooted tree $G$ which goes toward the root with probability $1-\varepsilon$ when it visits a vertex for the first time. At all other times it behaves like a simple random walk on $G$. We show that for all $\varepsilon\ge 0$ this process is transient. Also we consider a generalization of this process and establish its transience in some cases.

Article information

Electron. J. Probab., Volume 8 (2003), paper no. 23, 15 p.

First available in Project Euclid: 23 May 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60J10: Markov chains (discrete-time Markov processes on discrete state spaces) 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]


Volkov, Stanislav. Excited Random Walk on Trees. Electron. J. Probab. 8 (2003), paper no. 23, 15 p. doi:10.1214/EJP.v8-180. https://projecteuclid.org/euclid.ejp/1464037596

Export citation


  • Benjamini, Itai; Wilson, David B. Excited random walk. Electron. Comm. Probab. 8 (2003), 86–92.
  • Bhattacharya, Rabi N.; Waymire, Edward C. Stochastic processes with applications. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1990. xvi+672 pp. ISBN: 0-471-84272-9.
  • Davis, Burgess. Reinforced random walk. Probab. Theory Related Fields 84 (1990), no. 2, 203–229.
  • Davis, Burgess. Brownian motion and random walk perturbed at extrema. Probab. Theory Related Fields 113 (1999), no. 4, 501–518.
  • Davis, Burgess; Volkov, Stanislav. Continuous time vertex-reinforced jump processes. Probab. Theory Related Fields 123 (2002), no. 2, 281–300.
  • Doyle, Peter G.; Snell, J. Laurie. Random walks and electric networks. Carus Mathematical Monographs, 22. Mathematical Association of America, Washington, DC, 1984. xiv+159 pp. ISBN: 0-88385-024-9.
  • Durrett, Richard. Probability: theory and examples. Second edition. Duxbury Press, Belmont, CA, 1996. xiii+503 pp. ISBN: 0-534-24318-5.
  • Durrett, Rick; Kesten, Harry; Limic, Vlada. Once edge-reinforced random walk on a tree. Probab. Theory Related Fields 122 (2002), no. 4, 567–592.
  • Pemantle, P. (2002). Random processes with reinforcement. Preprint.
  • Sellke, T. (1994). Reinforced random walk on the $d-$dimensional integer lattice. Purdue University technical report 94-26.