Electronic Journal of Probability

Reflected Backward Stochastic Differential Equation with Jumps and Random Obstacle

Said Hamadène and Youssef Ouknine

Full-text: Open access


In this paper we give a solution for the one-dimensional reflected backward stochastic differential equation when the noise is driven by a Brownian motion and an independent Poisson point process. We prove existence and uniqueness of the solution in using penalization and the Snell envelope theory. However both methods use a contraction in order to establish the result in the general case. Finally, we highlight the connection of such reflected BSDEs with integro-differential mixed stochastic optimal control.

Article information

Electron. J. Probab., Volume 8 (2003), paper no. 2, 20 p.

First available in Project Euclid: 23 May 2016

Permanent link to this document

Digital Object Identifier

Mathematical Reviews number (MathSciNet)

Zentralblatt MATH identifier

Primary: 60F10: Large deviations
Secondary: 60JH20 60H99: None of the above, but in this section

Backward stochastic differential equation penalization Poisson point process martingale representation theorem integral-differential mixed control


Hamadène, Said; Ouknine, Youssef. Reflected Backward Stochastic Differential Equation with Jumps and Random Obstacle. Electron. J. Probab. 8 (2003), paper no. 2, 20 p. doi:10.1214/EJP.v8-124. https://projecteuclid.org/euclid.ejp/1464037575

Export citation


  • Barles, R. Buckdahn and E.Pardoux (1997). BSDEs and integral-partial differential equations, Stochastics 60, 57-83.
  • V.E.Benes (1970). Existence of optimal strategies based on specific information for a class of stochastic decision problems, SIAM JCO 8, 179-188.
  • C.Dellacherie (1972). Capacités et Processus Stochastiques, Springer Verlag.
  • C.Dellacherie and P.A.Meyer (1980). Probabilités et Potentiel, Hermann (Paris).
  • N.El-Karoui (1979). Les aspects probabilistes du contrôle stochastique, Ecole d'été de Saint-Flour, Lecture Notes in Mathematics 876, 73-238.
  • N.El-Karoui, C.Kapoudjian, E.Pardoux, S.Peng and M.C.Quenez (1997). Reflected solutions of backward SDE's and related obstacle problems for PDE's, Ann. Prob. 25 (2), 702-737.
  • S.Hamadène and J.P.Lepeltier (2000). Reflected Backward SDE's and Mixed Game Problems, Stoch. Proc. and their Appli. 85, 177-188.
  • N. Ikeda and S. Watanabe (1981). Stochastic Differential Equations and Diffusion Processes, North Holland/Kodansha.
  • J.P. Lepeltier and B.Marchal (1977). Existence de politique optimale dans le contrôle intégro-différentiel, Annales de l'I.H.P. XIII (1), 45-97.
  • Y. Ouknine (1997). Multivalued backward stochastic differential Equations, Preprint, Université de Marrakech.
  • E.Pardoux, S.Peng (1990). Adapted Solutions of Backward Stochastic Differential Equations, Systems and Control Letters 14, 55-61.
  • R. Situ (1997). On solution of backward stochastic differential equations with jump and applications, Stoch. Proc. and their Appli. 66, 209-236.
  • S. Tang and X. Li (1994). Necessary condition for optimal control of stochastic systems with random jumps, SIAM JCO 32, 1447-1475.