Open Access
2016 Heat kernel estimates for random walks with degenerate weights
Sebastian Andres, Jean-Dominique Deuschel, Martin Slowik
Electron. J. Probab. 21: 1-21 (2016). DOI: 10.1214/16-EJP4382

Abstract

We establish Gaussian-type upper bounds on the heat kernel for a continuous-time random walk on a graph with unbounded weights under an integrability assumption. For the proof we use Davies’ perturbation method, where we show a maximal inequality for the perturbed heat kernel via Moser iteration.

Citation

Download Citation

Sebastian Andres. Jean-Dominique Deuschel. Martin Slowik. "Heat kernel estimates for random walks with degenerate weights." Electron. J. Probab. 21 1 - 21, 2016. https://doi.org/10.1214/16-EJP4382

Information

Received: 24 June 2015; Accepted: 30 March 2016; Published: 2016
First available in Project Euclid: 18 April 2016

zbMATH: 1386.39013
MathSciNet: MR3492937
Digital Object Identifier: 10.1214/16-EJP4382

Subjects:
Primary: 39A12 , 60J35 , 60K37 , 82C41

Keywords: heat kernel , Moser iteration , Random walk

Vol.21 • 2016
Back to Top