Electronic Journal of Probability

Optimal binomial, Poisson, and normal left-tail domination for sums of nonnegative random variables

Iosif Pinelis

Full-text: Open access

Abstract

Exact upper bounds on the generalized moments $\operatorname{\mathsf {E}} f(S_n)$ of sums $S_n$ of independent nonnegative random variables $X_i$ for certain classes $\mathcal{F} $ of nonincreasing functions $f$ are given in terms of (the sums of) the first two moments of the $X_i$’s. These bounds are of the form $\operatorname{\mathsf {E}} f(\eta )$, where the random variable $\eta $ is either binomial or Poisson depending on whether $n$ is fixed or not. The classes $\mathcal{F} $ contain, and are much wider than, the class of all decreasing exponential functions. As corollaries of these results, optimal in a certain sense upper bounds on the left-tail probabilities $\operatorname{\mathsf {P}} (S_n\le x)$ are presented, for any real $x$. In fact, more general settings than the ones described above are considered. Exact upper bounds on the exponential moments $\operatorname{\mathsf {E}} \exp \{hS_n\}$ for $h<0$, as well as the corresponding exponential bounds on the left-tail probabilities, were previously obtained by Pinelis and Utev. It is shown that the new bounds on the tails are substantially better.

Article information

Source
Electron. J. Probab., Volume 21 (2016), paper no. 20, 19 pp.

Dates
Received: 11 August 2015
Accepted: 25 February 2016
First available in Project Euclid: 11 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1457706456

Digital Object Identifier
doi:10.1214/16-EJP4474

Mathematical Reviews number (MathSciNet)
MR3485362

Zentralblatt MATH identifier
1338.60061

Subjects
Primary: 60E15: Inequalities; stochastic orderings
Secondary: 60G42: Martingales with discrete parameter 60G48: Generalizations of martingales

Keywords
probability inequalities sums of random variables submartingales martingales upper bounds generalized moments

Rights
Creative Commons Attribution 4.0 International License.

Citation

Pinelis, Iosif. Optimal binomial, Poisson, and normal left-tail domination for sums of nonnegative random variables. Electron. J. Probab. 21 (2016), paper no. 20, 19 pp. doi:10.1214/16-EJP4474. https://projecteuclid.org/euclid.ejp/1457706456


Export citation

References

  • [1] Bengt von Bahr and Carl-Gustav Esseen, Inequalities for the $r$th absolute moment of a sum of random variables, $1\leq r\leq 2$, Ann. Math. Statist 36 (1965), 299–303.
  • [2] George Bennett, Probability inequalities for the sum of independent random variables, J. Amer. Statist. Assoc. 57 (1962), no. 297, 33–45.
  • [3] V. Bentkus, N. Kalosha, and M. van Zuijlen, On domination of tail probabilities of (super)martingales: explicit bounds, Liet. Mat. Rink. 46 (2006), no. 1, 3–54.
  • [4] Vidmantas Bentkus, On Hoeffding’s inequalities, Ann. Probab. 32 (2004), no. 2, 1650–1673.
  • [5] Patrick Billingsley, Convergence of probability measures, John Wiley & Sons Inc., New York, 1968.
  • [6] Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi, and Pascal Massart, Moment inequalities for functions of independent random variables, Ann. Probab. 33 (2005), no. 2, 514–560.
  • [7] George E. Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition, Quantifier elimination and cylindrical algebraic decomposition (Linz, 1993), Texts Monogr. Symbol. Comput., Springer, Vienna, 1998, pp. 85–121.
  • [8] Christopher R. Dance, An inequality for the sum of independent bounded random variables, J. Theoret. Probab. 27 (2014), no. 2, 358–369.
  • [9] Morris L. Eaton, A note on symmetric Bernoulli random variables, Ann. Math. Statist. 41 (1970), 1223–1226.
  • [10] Morris L. Eaton, A probability inequality for linear combinations of bounded random variables, Ann. Statist. 2 (1974), 609–613.
  • [11] Wassily Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Statist. Assoc. 58 (1963), 13–30.
  • [12] R. Ibragimov and Sh. Sharakhmetov, The best constant in the Rosenthal inequality for nonnegative random variables, Statist. Probab. Lett. 55 (2001), no. 4, 367–376.
  • [13] Rafał Latała, Estimation of moments of sums of independent real random variables, Ann. Probab. 25 (1997), no. 3, 1502–1513.
  • [14] S. Łojasiewicz, Sur les ensembles semi-analytiques, Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp. 237–241.
  • [15] Albert W. Marshall and Ingram Olkin, Inequalities: theory of majorization and its applications, Mathematics in Science and Engineering, vol. 143, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1979.
  • [16] Andreas Maurer, A bound on the deviation probability for sums of non-negative random variables, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 15, 6 pp. (electronic).
  • [17] Vicente Muñoz and Ulf Persson, Interviews with three Fields medallists: Andrei Okounkov, Newsletter of the European Mathematical Society (2006, December), no. 62, 34–35, http://www.ams.org/notices/200703/comm-fields-interviews.pdf, pp. 1–2.
  • [18] Andrew Odlyzko, Review: Experimental Mathematics in Action, Amer. Math. Monthly 118 (2011), no. 10, 946–951, http://dx.doi.org/10.4169/amer.math.monthly.118.10.946.
  • [19] Adam Osȩkowski, Sharp inequalities for sums of nonnegative random variables and for a martingale conditional square function, ALEA Lat. Am. J. Probab. Math. Stat. 7 (2010), 243–256.
  • [20] I. Pinelis, Convex cones of generalized multiply monotone functions and the dual cones, ArXiv e-prints (2016), arXiv:1501.06599v2 [math.CA], to appear in Banach Journal of Mathematical Analysis.
  • [21] I. F. Pinelis and A. I. Sakhanenko, Remarks on inequalities for probabilities of large deviations, Theory Probab. Appl. 30 (1985), no. 1, 143–148.
  • [22] I. F. Pinelis and S. A. Utev, Sharp exponential estimates for sums of independent random variables, Theory Probab. Appl. 34 (1989), no. 2, 340–346.
  • [23] Iosif Pinelis, Extremal probabilistic problems and Hotelling’s $T^2$ test under a symmetry condition, Ann. Statist. 22 (1994), no. 1, 357–368.
  • [24] Iosif Pinelis, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab. 22 (1994), no. 4, 1679–1706.
  • [25] Iosif Pinelis, Optimal tail comparison based on comparison of moments, High dimensional probability (Oberwolfach, 1996), Progr. Probab., vol. 43, Birkhäuser, Basel, 1998, pp. 297–314.
  • [26] Iosif Pinelis, Fractional sums and integrals of $r$-concave tails and applications to comparison probability inequalities, Advances in stochastic inequalities (Atlanta, GA, 1997), Contemp. Math., vol. 234, Amer. Math. Soc., Providence, RI, 1999, pp. 149–168.
  • [27] Iosif Pinelis, Exact inequalities for sums of asymmetric random variables, with applications, Probab. Theory Related Fields 139 (2007), no. 3–4, 605–635.
  • [28] Iosif Pinelis, On the Bennett-Hoeffding inequality, http://arxiv.org/abs/0902.4058; a shorter version appeared in [31], 2009.
  • [29] Iosif Pinelis, Positive-part moments via the Fourier–Laplace transform, J. Theor. Probab. 24 (2011), 409–421.
  • [30] Iosif Pinelis, Exact Rosenthal-type inequalities for $p=3$, and related results, Statistics & Probability Letters 83 (2013), no. 12, 2634–2637.
  • [31] Iosif Pinelis, On the Bennett–Hoeffding inequality, Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 50 (2014), no. 1, 15–27.
  • [32] Iosif Pinelis, Best possible bounds of the von Bahr–Esseen type, Ann. Funct. Anal. 6 (2015), no. 4, 1–29.
  • [33] Iosif Pinelis, Exact binomial, Poisson, and Gaussian bounds for the left tails of sums of nonnegative random variables, Version 3, http://arxiv.org/abs/1503.06482, 2015.
  • [34] Iosif Pinelis, Exact Rosenthal-type bounds, Ann. Probab. 43 (2015), no. 5, 2511–2544.
  • [35] Julie Rehmeyer, Voevodsky’s Mathematical Revolution, Scientific American (2013), no. October 1, http://blogs.scientificamerican.com/guest-blog/2013/10/01/voevodskys-mathematical-revolution/
  • [36] Haskell P. Rosenthal, On the subspaces of $L^{p}$ $(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), 273–303.
  • [37] L. R. Shenton, Inequalities for the normal integral including a new continued fraction, Biometrika 41 (1954), 177–189.
  • [38] Alfred Tarski, A Decision Method for Elementary Algebra and Geometry, RAND Corporation, Santa Monica, Calif., 1948.
  • [39] I. S. Tyurin, Some optimal bounds in the central limit theorem using zero biasing, Statist. Probab. Lett. 82 (2012), no. 3, 514–518.