Electronic Journal of Probability

The Longtime Behavior of Branching Random Walk in a Catalytic Medium

Andreas Greven, Achim Klenke, and Anton Wakolbinger

Full-text: Open access

Abstract

Consider a countable collection of particles located on a countable group, performing a critical branching random walk where the branching rate of a particle is given by a random medium fluctuating both in space and time. Here we study the case where the time-space random medium (called catalyst) is also a critical branching random walk evolving autonomously while the local branching rate of the reactant process is proportional to the number of catalytic particles present at a site. The catalyst process and the reactant process typically have different underlying motions.

Article information

Source
Electron. J. Probab., Volume 4 (1999), paper no. 12, 80 pp.

Dates
Accepted: 6 April 1999
First available in Project Euclid: 4 March 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1457125521

Digital Object Identifier
doi:10.1214/EJP.v4-49

Mathematical Reviews number (MathSciNet)
MR1690316

Zentralblatt MATH identifier
0930.60090

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
Branching random walk in random medium reactant-catalyst systems interacting particle Systems random media

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Greven, Andreas; Klenke, Achim; Wakolbinger, Anton. The Longtime Behavior of Branching Random Walk in a Catalytic Medium. Electron. J. Probab. 4 (1999), paper no. 12, 80 pp. doi:10.1214/EJP.v4-49. https://projecteuclid.org/euclid.ejp/1457125521


Export citation

References

  • [AN] K. Athreya, P. Ney: Branching Processes, Springer Verlag, (1972).
  • [BEP] M.T. Barlow, S.N. Evans, and E.A. Perkins: Collision local times and measure-valued processes, Can. J. Math., 43(5), 897-938, (1991).
  • [B] D.L. Burkholder: Distribution function inequalities for martingales, Ann. Probab. 1, 19-42, (1973).
  • [D] D. A. Dawson: Measure-Valued Markov Processes. In: Ecole d'Ete de Probabilites de St.Flour XXI - 1991, LNM 1541, Springer-Verlag, (1993).
  • [DF1] D.A. Dawson, K. Fleischmann: On spatially homogeneous branching processes in a random environment, Math. Nachr., 113, 249-257, (1983).
  • [DF2] D. A. Dawson, K. Fleischmann: Critical dimension for a model of branching in a random medium, Z. Wahrsch. Verw. Gebiete 70, 315-334, (1985).
  • [DF3] D.A. Dawson, K. Fleischmann: A Super-Brownian motion with a single point catalyst, Stochastic Process. Appl. 49, 3-40, (1995).
  • [DF4] D. A. Dawson, K. Fleischmann: Super-Brownian motions in higher dimensions with absolutely continuous measure states, Journ. Theoret. Probab., 8(1), 179-206, (1995).
  • [DF5] D. A. Dawson, K. Fleischmann: A continuous super-Brownian motion in a super-Brownian medium. Journ. Theoret. Probab., 10(1), 213-276, (1997).
  • [DF6] D.A. Dawson, K. Fleischmann: Longtime behavior of a branching process controlled by branching catalysts. Stoch. Process. Appl. 71(2), 241-257, (1997).
  • [DG1] D. A. Dawson, A. Greven: Multiple Time Scale Analysis of Interacting Diffusions. Prob. Theory and Rel. Fields, 95, 467-508, (1993).
  • [DG2] D. Dawson, A. Greven: Multiple Space-Time Scale Analysis for interacting Branching Models, Electr. Journ. of Probab., Vol. 1(14), (1996).
  • [DH] D. A. Dawson, K. Hochberg: A multilevel branching model, Adv. Appl. Prob. 23, 701-715, (1991).
  • [DHV] D.A. Dawson, K. Hochberg and V. Vinogradov: On weak convergence of branching particle systems undergoing spatial motion, Donald A. Dawson, Kenneth J. Hochberg, and Vladimir Vinogradov. In: Stochastic analysis: random fields and measure-valued processes (Ramat Gan, 1993/1995)}, 65-79. Bar-Ilan Univ., Ramat Gan, (1996).
  • [DFJ] S.W. Dharmadhiakri, V. Fabian, K. Jogdeo: Bounds on moments of martingales, Ann. Math. Statist. 39, 1719-1723, (1968).
  • [DS] R. Durrett, R. Schinazi: Asymptotic critical value for a competition model. Ann. Appl. Prob. 7, 1047-1066, (1993).
  • [Du] R. Durrett: Probability: Theory and examples (second edition) Wadsworth, (1996).
  • [EF] A. Etheridge, K. Fleischmann: Persistence of a two-dimensional super-Brownian motion in a catalytic medium, Probab. Theory Relat. Fields, 110(1), 1-12, (1998).
  • [F] K. Fleischmann: Ergodic properties of infinitely divisible stochastic point processes, Math. Nach. 102, 127-135, (1981).
  • [FK] K. Fleischmann, A. Klenke: Smooth density field of two-dimensional catalytic super-Brownian motion. Ann. Appl. Probab., to appear (1998).
  • [G] A. Greven: A phase transition for the coupled branching process. Part 1. The ergodic theory in the range of finite second moments. Probab. Theory Relat. Fields 87, 417-458, (1991).
  • [GH] A. Greven, F. den Hollander: Branching Random Walk in Random Environment: Phase Transition for Local and Global Growth Rates. Prob. Theory and Relat. Fields, 91 (2), 195-250, (1992).
  • [GRW] L. G. Gorostiza, S. Roelly and A. Wakolbinger: Sur la peristance du processus de Dawson Watanabe stable (L'interversion de la limite en temps et de la renormalisation), Seminaire de Probabilites XXIV, LNM 1426, 275-281, Springer-Verlag, (1990).
  • [K1] O. Kallenberg: Stability of critical cluster fields, Math. Nachr. 77, 7-43, (1977).
  • [K2] O. Kallenberg: Random Measures, Academic Press, (1983).
  • [Ke] H. Kesten: Branching Random Walk with a Critical Branching Part, Journal of Theoretical Probability, Vol 8(4), 921-962, (1995).
  • [Kl1] A. Klenke: Different Clustering Regimes in Systems of Hierarchically Interacting Diffusions, Ann. Probab. 24, No. 2, 660-697, (1996).
  • [Kl2] A. Klenke: Multiple Scale Analysis of clusters in spatial branching models, Ann. Probab. 25, No. 4, 1670-1711, (1997).
  • [Kl3] A. Klenke: A Review on Spatial Catalytic Branching Processes, to appear in: A Festschrift in honor of Don Dawson, (1999).
  • [L] T. M. Liggett: Interacting Particle Systems, Grundlehren der mathematischen Wissenschaften, Vol. 276, Springer Verlag, (1985).
  • [LMW] A. Liemant, K. Matthes, A. Wakolbinger: Equilibrium Distributions of Branching Processes, Akademie-Verlag Berlin, (1988).
  • [LW] J.A. Lopez-Mimbela, A. Wakolbinger, Clumping in multitype-branching trees, Adv. in Appl. Probab. 28, (1996).
  • [P] E. A. Perkins: The Hausdorff measure of the closed support of super-Brownian motion, Ann. Inst. H. Poincare, 25, 205-224, (1989).
  • [Pr] M. H. Protter, H. F. Weinberger: Maximum Principles of Differential Equations. Prentice-Halle, Englewood Cliffs, NJ, (1967).
  • [T] D. Tanny: A necessary and sufficient condotion condition for a branching process in a random environment to grow like the product of its means. Stochastic Process. Appl. 28, 123-139, (1988).
  • [W] A. Wakolbinger: Limits of spatial branching populations. Bernoulli Vol. 1, No. 1/2, 171-190, (1995).