Electronic Journal of Probability

On diffusion limited deposition

Amine Asselah, Emilio N.M. Cirillo, Benedetto Scoppola, and Elisabetta Scoppola

Full-text: Open access

Abstract

We propose a simple model of columnar growth through diffusion limited aggregation (DLA). Consider a graph $G_N\times \mathbb{N} $, where the basis has $N$ vertices $G_N:=\{1,\dots ,N\}$, and two vertices $(x,h)$ and $(x',h')$ are adjacent if $|h-h'|\le 1$. Consider there a simple random walk coming from infinity which deposits on a growing cluster as follows: the cluster is a collection of columns, and the height of the column first hit by the walk immediately grows by one unit. Thus, columns do not grow laterally.

We prove that there is a critical time scale $N/\log (N)$ for the maximal height of the piles, i.e., there exist constants $\alpha <\beta $ such that the maximal pile height at time $\alpha N/\log (N)$ is of order $\log (N)$, while at time $\beta N/\log (N)$ is larger than $N^\chi $ for some positive $\chi $. This suggests that a monopolistic regime starts at such a time and only the highest pile goes on growing. If we rather consider a walk whose height-component goes down deterministically, the resulting ballistic deposition has maximal height of order $\log (N)$ at time $N$.

These two deposition models, diffusive and ballistic, are also compared with uniform random allocation and Polya’s urn.

Article information

Source
Electron. J. Probab., Volume 21 (2016), paper no. 19, 29 pp.

Dates
Received: 19 May 2015
Accepted: 26 January 2016
First available in Project Euclid: 26 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1456499641

Digital Object Identifier
doi:10.1214/16-EJP4310

Mathematical Reviews number (MathSciNet)
MR3485361

Zentralblatt MATH identifier
1338.60226

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82B24: Interface problems; diffusion-limited aggregation 60J45: Probabilistic potential theory [See also 31Cxx, 31D05]

Keywords
diffusion limited aggregation cluster growth random walk

Rights
Creative Commons Attribution 4.0 International License.

Citation

Asselah, Amine; Cirillo, Emilio N.M.; Scoppola, Benedetto; Scoppola, Elisabetta. On diffusion limited deposition. Electron. J. Probab. 21 (2016), paper no. 19, 29 pp. doi:10.1214/16-EJP4310. https://projecteuclid.org/euclid.ejp/1456499641


Export citation

References

  • [1] Amir, G.: One-dimensional long-range diffusion-limited aggregation III – The limit aggregate. Preprint (2009), arXiv:0911.0122.
  • [2] Amir, G., Angel, O., Benjamini,I., and Kozma, G.: One–dimensional long-range diffusion-limited aggregation I. Preprint (2009), arXiv:0910.4416.
  • [3] Amir, G., Angel O., and Kozma G.: One-dimensional long-range Diffusion Limited Aggregation II: the transient case. Preprint (2013), arXiv:1306.4654.
  • [4] Asselah, A. and Gaudillière, A.: From logarithmic to subdiffusive polynomial fluctuations for internal DLA and related growth models. The Annals of Probability 41, (2013), 1115–1159.
  • [5] Asselah, A. and Gaudillière, A.: Sub–logarithmic fluctuations for internal DLA. The Annals of Probability 41, (2013), 1160–1179.
  • [6] Asselah, A. and Gaudillière, A.: Lower bounds on fluctuations for internal DLA. Probability Theory Related Fields 158, (2014), 39–53.
  • [7] Barlow, M.T., Pemantle, R., and Perkins, E.A.: Diffusion-limited aggregation on a tree. Probability Theory Related Fields 107, (1997), 1–60.
  • [8] Benjamini, I., Duminil-Copin, H., Kozma, G., and Lucas, C.: The Internal Limited Aggregation model with random starting point. Preprint 2013.
  • [9] Benjamini, I. and Yadin, A.: Diffusion limited aggregation on a cylinder. Communications in Mathematical Physics 279, (2008), 187–223.
  • [10] Diaconis, P. and Fulton, W.: A growth model, a game, an algebra, Lagrange inversion, and characteristic classes. Rend. Sem. Mat. Univ. Politec. Torino 49, (1991), 95–119.
  • [11] Eden, M.: A two-dimensional growth process. Proc. 4th Berkeley Sympos.Math.Stat. and Proba IV, (1961),223–239.
  • [12] Erbez-Wagner, D.: Discrete growth models. Doctorate Dissertation, University of Washington, 1999. Preprint arXiv:math/9908030.
  • [13] Hasley, T.C.: Diffusion-Limited Aggregation: A Model for Pattern Formation. Physics Today 53, (2000), 11–36.
  • [14] Kesten, H.: How long are the arms in DLA? J. Phys. A 20, (1987), 29–33.
  • [15] Kesten, H.: Hitting probabilities of random walks on ${\mathbb Z}^d$. Stochastic Processes and Applications 25, (1987), 165–184.
  • [16] Kesten, H.: Upper bounds for the growth rate of DLA. Physica A 168, (1990), 529–535.
  • [17] Kesten, H., Kozlov, M.V., and Spitzer, F.: A limit law for random walk in a random environment. Compositio Mathematica 30, (1975), 145–168.
  • [18] Jerison, D., Levine, L., and Sheffield, S.: Logarithmic fluctuations for internal DLA. J. Amer. Math. Soc. 25, (2012), 271–301.
  • [19] Jerison, D., Levine, L., and Sheffield, S.: Internal DLA in Higher Dimensions. Electron. J. Probab. 18, (2013), 14.
  • [20] Jerison, D., Levine, L., and Sheffield, S.: Internal DLA and the Gaussian Free Field. Duke Math. J. 163, (2014), 267–308.
  • [21] Lawler, G.: Intersection of Random Walks. Probability and its Applications. Birkhäuser Boston, Inc., Boston, MA, 1991.
  • [22] Lawler, G., Bramson, M., and Griffeath, D.: Internal diffusion limited aggregation. Ann. Probab. 20, (1992), 2117–2140.
  • [23] Lawler, G and Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies In Advanced Mathematics, 2010.
  • [24] Levine, L. and Peres, Y.: Strong spherical asymptotics for rotor-router aggregation and the divisible sandpile. Potential Analysis 30, (2009), 1–27.
  • [25] Meakin, P. and Deutch, J.M.: The formation of surfaces by diffusion limited annihilation. J. Chem. Phys. 85, (1986), 2320–2325.
  • [26] Norris, J. and Turner, A.: Hastings-Levitov aggregation in the small-particle limit. Comm. Math. Phys. 316, (2012), 809–841.
  • [27] Pemantle, R.: A survey of random processes with reinforcement. Probability Surveys 4, (2007), 1–79.
  • [28] Richardson, D.: Random growth in a tessellation. Proc. Camb. Phil. Soc. 71, (1973), 515–528.
  • [29] Rolla, L. and Sidoravicius, V.: Absorbing-state phase transition for driven-dissipative stochastic dynamics on $\mathbb Z$. Invent. Math. 188, (2012), 127–150.
  • [30] Sidoravicius, V. and Teixeira, A.: Absorbing-state transition for Stochastic Sandpiles and Activated Random Walks. Preprint 2014, arXiv:1412.7098.
  • [31] Witten, T.A. and Sander, L.M.: Diffusion–limited aggregation, a kinetic critical phenomenon. Phys. Rev. Letters 47, (1981), 1400–1403.