Electronic Journal of Probability

Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment

Sung Won Ahn and Jonathon Peterson

Full-text: Open access

Abstract

We consider a one dimensional random walk in a random environment (RWRE) with a positive speed $\lim _{n\to \infty }\frac{X_n} {n}=v_\alpha >0$. Gantert and Zeitouni [9] showed that if the environment has both positive and negative local drifts then the quenched slowdown probabilities $P_\omega (X_n < xn)$ with $x \in (0,v_\alpha )$ decay approximately like $\exp \{-n^{1-1/s}\}$ for a deterministic $s > 1$. More precisely, they showed that $n^{-\gamma } \log P_\omega ( X_n < x n)$ converges to $0$ or $-\infty $ depending on whether $\gamma > 1-1/s$ or $\gamma < 1-1/s$. In this paper, we improve on this by showing that $n^{-1+1/s} \log P_\omega ( X_n < x n)$ oscillates between $0$ and $-\infty $, almost surely. This had previously been shown only in a very special case of random environments [7].

Article information

Source
Electron. J. Probab. Volume 21, Number (2016), paper no. 16, 27 pp.

Dates
Received: 1 September 2015
Accepted: 12 February 2016
First available in Project Euclid: 25 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1456412956

Digital Object Identifier
doi:10.1214/16-EJP4529

Zentralblatt MATH identifier
1336.60197

Subjects
Primary: 60K37: Processes in random environments
Secondary: 60F10: Large deviations 60J15

Keywords
random walk in random environment large deviations quenched

Rights
Creative Commons Attribution 4.0 International License.

Citation

Ahn, Sung Won; Peterson, Jonathon. Oscillations of quenched slowdown asymptotics for ballistic one-dimensional random walk in a random environment. Electron. J. Probab. 21 (2016), paper no. 16, 27 pp. doi:10.1214/16-EJP4529. https://projecteuclid.org/euclid.ejp/1456412956


Export citation

References

  • [1] Francis Comets, Nina Gantert, and Ofer Zeitouni, Erratum: “Quenched, annealed and functional large deviations for one-dimensional random walk in random environment” [Probab. Theory Related Fields 118 (2000), no. 1, 65–114; MR1785454 (2002h:60090)], Probab. Theory Related Fields 125 (2003), no. 1, 42–44.
  • [2] Amir Dembo, Yuval Peres, and Ofer Zeitouni, Tail estimates for one-dimensional random walk in random environment, Comm. Math. Phys. 181 (1996), no. 3, 667–683.
  • [3] D. Dolgopyat and I. Goldsheid, Quenched limit theorems for nearest neighbour random walks in 1D random environment, Comm. Math. Phys. 315 (2012), no. 1, 241–277.
  • [4] Nathanaël Enriquez, Christophe Sabot, Laurent Tournier, and Olivier Zindy, Quenched limits for the fluctuations of transient random walks in random environment on $\mathbb Z^1$, Ann. Appl. Probab. 23 (2013), no. 3, 1148–1187.
  • [5] Alexander Fribergh, Nina Gantert, and Serguei Popov, On slowdown and speedup of transient random walks in random environment, Probab. Theory Related Fields 147 (2010), no. 1–2, 43–88.
  • [6] D. H. Fuk and S. V. Nagaev, Probabilistic inequalities for sums of independent random variables, Teor. Verojatnost. i Primenen. 16 (1971), 660–675.
  • [7] Nina Gantert, Subexponential tail asymptotics for a random walk with randomly placed one-way nodes, Ann. Inst. H. Poincaré Probab. Statist. 38 (2002), no. 1, 1–16.
  • [8] Nina Gantert and Zhan Shi, Many visits to a single site by a transient random walk in random environment, Stochastic Process. Appl. 99 (2002), no. 2, 159–176.
  • [9] Nina Gantert and Ofer Zeitouni, Quenched sub-exponential tail estimates for one-dimensional random walk in random environment, Comm. Math. Phys. 194 (1998), no. 1, 177–190.
  • [10] Andreas Greven and Frank den Hollander, Large deviations for a random walk in random environment, Ann. Probab. 22 (1994), no. 3, 1381–1428.
  • [11] Donald L. Iglehart, Extreme values in the $GI/G/1$ queue, Ann. Math. Statist. 43 (1972), 627–635.
  • [12] H. Kesten, M. V. Kozlov, and F. Spitzer, A limit law for random walk in a random environment, Compositio Math. 30 (1975), 145–168.
  • [13] Jonathon Peterson and Gennady Samorodnitsky, Weak quenched limiting distributions for transient one-dimensional random walk in a random environment, Ann. Inst. Henri Poincaré Probab. Stat. 49 (2013), no. 3, 722–752.
  • [14] Jonathon Peterson and Ofer Zeitouni, Quenched limits for transient, zero speed one-dimensional random walk in random environment, Ann. Probab. 37 (2009), no. 1, 143–188.
  • [15] Agoston Pisztora and Tobias Povel, Large deviation principle for random walk in a quenched random environment in the low speed regime, Ann. Probab. 27 (1999), no. 3, 1389–1413.
  • [16] Agoston Pisztora, Tobias Povel, and Ofer Zeitouni, Precise large deviation estimates for a one-dimensional random walk in a random environment, Probab. Theory Related Fields 113 (1999), no. 2, 191–219.
  • [17] Ya. G. Sinaĭ, The limit behavior of a one-dimensional random walk in a random environment, Teor. Veroyatnost. i Primenen. 27 (1982), no. 2, 247–258.
  • [18] Fred Solomon, Random walks in a random environment, Ann. Probability 3 (1975), 1–31.
  • [19] Simon Tavaré and Ofer Zeitouni, Lectures on probability theory and statistics, Lecture Notes in Mathematics, vol. 1837, Springer-Verlag, Berlin, 2004, Lectures from the 31st Summer School on Probability Theory held in Saint-Flour, July 8–25, 2001, Edited by Jean Picard.