Electronic Journal of Probability

Absorbing-state phase transition in biased activated random walk

Lorenzo Taggi

Full-text: Open access

Abstract

We consider the activated random walk model on $\mathbb{Z} ^d$, which undergoes a transition from an absorbing regime to a regime of sustained activity. A central question for this model involves the estimation of the critical density $\mu _c$. We prove that if the jump distribution is biased, then $\mu _c < 1$ for any sleeping rate $\lambda $, $d \geq 1$, and that $\mu _c \to 0$ as $\lambda \to 0$ in one dimension. This answers a question from Rolla and Sidoravicius (2012) and Dickman, Rolla and Sidoravicius (2010) in the case of biased jump distribution. Furthermore, we prove that the critical density depends on the jump distribution.

Article information

Source
Electron. J. Probab. Volume 21, Number (2016), paper no. 13, 15 pp.

Dates
Received: 30 April 2015
Accepted: 27 January 2016
First available in Project Euclid: 23 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1456246244

Digital Object Identifier
doi:10.1214/16-EJP4275

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43] 82C22: Interacting particle systems [See also 60K35]

Keywords
interacting particles activated random walk lattice gasses Abelian networks

Rights
Creative Commons Attribution 4.0 International License.

Citation

Taggi, Lorenzo. Absorbing-state phase transition in biased activated random walk. Electron. J. Probab. 21 (2016), paper no. 13, 15 pp. doi:10.1214/16-EJP4275. https://projecteuclid.org/euclid.ejp/1456246244.


Export citation

References

  • [1] E. D. Andjel: Invariant measures for the zero range processes. Annals of Probability, 10, 525–547, (1982).
  • [2] R. Basu, S. Ganguly, C. Hoffman: Non-fixation of symmetric Activated Random Walk on the line for small sleep rate, arXiv:1508.05677, (2015).
  • [3] M. Cabezas, L. T. Rolla, V. Sidoravicius: Non-equilibrium Phase Transitions: Activated Random Walks at Criticality. Journal of Statistical Physics, 155, 1112–1125, (2014).
  • [4] R. Dickman, L.T. Rolla, V. Sidoravicius: Activated Random Walkers: Facts, Conjectures and Challenges. Journal of Statistical Physics, 138, 126–142, (2010).
  • [5] K. Eriksson: Chip firing games on mutating graphs. SIAM J. Discrete Math, 9, 118–128, (1996).
  • [6] O. Gurel-Gurevich, G. Amir: On Fixation of Activated Random Walks. Electronic Communications in Probability, 15, Art 12, (2009).
  • [7] C. Hoffman and V. Sidoravicius: unpublished (2004). The result can be found in [3, Proposition 1].
  • [8] G. F. Lawler, M. Bramson and D. Griffeath: Internal diffusion limited aggregation. Annals of Probability 20 (4), 2117–2140, (1992).
  • [9] L. T. Rolla and V. Sidoravicius: Absorbing-State Phase Transition for Driven-Dissipative Stochastic Dynamics on $\mathbb{Z} $. Inventiones Mathematicae, 188, 1, 127–150, (2012).
  • [10] L T. Rolla, L. Tournier: Sustained Activity for Biased Activated Random Walks at Arbitrarily Low Density, arXiv:1507.04732, (2015).
  • [11] A. Stauffer, L. Taggi: Critical density of activated random walks on $\mathbb{Z} ^d$ and general graphs, arXiv:1512.02397 (2015).
  • [12] E. Shellef: Nonfixation for activated random walk. Alea, 7, 137–149, (2010).