Electronic Journal of Probability

Inhomogeneous first-passage percolation

Daniel Ahlberg, Michael Damron, and Vladas Sidoravicius

Full-text: Open access

Abstract

We study first-passage percolation where edges in the left and right half-planes are assigned values according to different distributions. We show that the asymptotic growth of the resulting inhomogeneous first-passage process obeys a shape theorem, and we express the limiting shape in terms of the limiting shapes for the homogeneous processes for the two weight distributions. We further show that there exist pairs of distributions for which the rate of growth in the vertical direction is strictly larger than the rate of growth of the homogeneous process with either of the two distributions, and that this corresponds to the creation of a defect along the vertical axis in the form of a ‘pyramid’.

Article information

Source
Electron. J. Probab., Volume 21 (2016), paper no. 4, 19 pp.

Dates
Received: 7 July 2015
Accepted: 9 November 2015
First available in Project Euclid: 3 February 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1454514664

Digital Object Identifier
doi:10.1214/16-EJP4412

Mathematical Reviews number (MathSciNet)
MR3485346

Zentralblatt MATH identifier
1338.60225

Subjects
Primary: 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
inhomogeneous growth shape theorem columnar defect

Rights
Creative Commons Attribution 4.0 International License.

Citation

Ahlberg, Daniel; Damron, Michael; Sidoravicius, Vladas. Inhomogeneous first-passage percolation. Electron. J. Probab. 21 (2016), paper no. 4, 19 pp. doi:10.1214/16-EJP4412. https://projecteuclid.org/euclid.ejp/1454514664


Export citation

References

  • [1] Daniel Ahlberg, Convergence towards an asymptotic shape in first-passage percolation on cone-like subgraphs of the integer lattice, J. Theoret. Probab. 28 (2015), no. 1, 198–222.
  • [2] Daniel Ahlberg, A Hsu–Robbins–Erdős strong law in first-passage percolation, Ann. Probab. 43 (2015), no. 4, 1992–2025.
  • [3] V. Beffara, V. Sidoravicius, H. Spohn, and M. E. Vares, Polymer pinning in a random medium as influence percolation, Dynamics & stochastics, IMS Lecture Notes Monogr. Ser., vol. 48, Inst. Math. Statist., Beachwood, OH, 2006, pp. 1–15.
  • [4] Vincent Beffara, Vladas Sidoravicius, and Maria Eulalia Vares, Randomized polynuclear growth with a columnar defect, Probab. Theory Related Fields 147 (2010), no. 3-4, 565–581.
  • [5] J. van den Berg and H. Kesten, Inequalities for the time constant in first-passage percolation, Ann. Appl. Probab. 3 (1993), no. 1, 56–80.
  • [6] J. Theodore Cox and Richard Durrett, Some limit theorems for percolation processes with necessary and sufficient conditions, Ann. Probab. 9 (1981), no. 4, 583–603.
  • [7] M. Eden, A probabilistic model for morphogenesis, Symposium on information theory in biology, Pergamon Press, New York, 1958, pp. 359–370.
  • [8] S. Friedli, D. Ioffe, and Y. Velenik, Subcritical percolation with a line of defects, Ann. Probab. 41 (2013), no. 3B, 2013–2046.
  • [9] Geoffrey Grimmett and Harry Kesten, First-passage percolation, network flows and electrical resistances, Z. Wahrsch. Verw. Gebiete 66 (1984), no. 3, 335–366.
  • [10] C. Douglas Howard, Models of first-passage percolation, Probability on discrete structures, Encyclopaedia Math. Sci., vol. 110, Springer, Berlin, 2004, pp. 125–173.
  • [11] S. A. Janowsky and J. L. Lebowitz, Finite-size effects and shock fluctuations in the asymmetric simple-exclusion process, Phys. Rev. A 45 (1992), 618–625.
  • [12] S. A. Janowsky and J. L. Lebowitz, Exact results for the asymmetric simple exclusion process with a blockage, J. Statist. Phys. 77 (1994), no. 1-2, 35–51.
  • [13] D. Kandel and Mukamel D., Defects, interface profile and phase transitions in growth models, Europhys. Lett. 20 (1992), 325.
  • [14] M. Kardar, G. Parisi, and Y. C. Zhang, Dynamic scaling of growing interfaces, Phys. Rev. Lett. 56 (1986), 889–892.
  • [15] Harry Kesten, Aspects of first passage percolation, École d'été de probabilités de Saint-Flour, XIV—1984, Lecture Notes in Math., vol. 1180, Springer, Berlin, 1986, pp. 125–264.
  • [16] Harry Kesten, First-passage percolation, From classical to modern probability, Progr. Probab., vol. 54, Birkhäuser, Basel, 2003, pp. 93–143.
  • [17] J. F. C. Kingman, The ergodic theory of subadditive stochastic processes, J. Roy. Statist. Soc. Ser. B 30 (1968), 499–510.
  • [18] J. F. C. Kingman, Subadditive ergodic theory, Ann. Probability 1 (1973), 883–909, With discussion by D. L. Burkholder, Daryl Daley, H. Kesten, P. Ney, Frank Spitzer and J. M. Hammersley, and a reply by the author.
  • [19] J. Krug and H. Spohn, Kinetic roughening of growing surfaces, Solids far from equilibrium: Growth, morphology and defects (C. Godrèche, ed.), Cambridge University Press, Cambridge, 1991, pp. 479–582.
  • [20] M. Myllys, J. Maunuksela, J. Merikoski, J. Timonen, V. K. Horváth, M. Ha, and M. den Nijs, Effect of a columnar defect on the shape of slow-combustion fronts, Phys. Rev. E 68 (2003), 051103.
  • [21] D. E. Wolf and L.-H. Tang, Inhomogeneous growth processes, Phys. Rev. Lett. 65 (1990), 1591–1594.
  • [22] Yu Zhang, A note on inhomogeneous percolation, Ann. Probab. 22 (1994), no. 2, 803–819.