Electronic Journal of Probability

A Non-Skorohod Topology on the Skorohod Space

Adam Jakubowski

Full-text: Open access

Abstract

A new topology (called $S$) is defined on the space $D$ of functions $x: [0,1] \to R^1$ which are right-continuous and admit limits from the left at each $t > 0$. Although $S$ cannot be metricized, it is quite natural and shares many useful properties with the traditional Skorohod's topologies $J_1$ and $M_1$. In particular, on the space $P(D)$ of laws of stochastic processes with trajectories in $D$ the topology $S$ induces a sequential topology for which both the direct and the converse Prohorov's theorems are valid, the a.s. Skorohod representation for subsequences exists and finite dimensional convergence outside a countable set holds.

Article information

Source
Electron. J. Probab., Volume 2 (1997), paper no. 4, 21 pp.

Dates
Accepted: 4 July 1997
First available in Project Euclid: 26 January 2016

Permanent link to this document
https://projecteuclid.org/euclid.ejp/1453839980

Digital Object Identifier
doi:10.1214/EJP.v2-18

Mathematical Reviews number (MathSciNet)
MR1475862

Subjects
Primary: 60F17: Functional limit theorems; invariance principles
Secondary: 60B05: Probability measures on topological spaces 60G17: Sample path properties 54D55: Sequential spaces

Keywords
Skorohod space Skorohod representation convergence in distribution sequential spaces semimartingales

Rights
This work is licensed under aCreative Commons Attribution 3.0 License.

Citation

Jakubowski, Adam. A Non-Skorohod Topology on the Skorohod Space. Electron. J. Probab. 2 (1997), paper no. 4, 21 pp. doi:10.1214/EJP.v2-18. https://projecteuclid.org/euclid.ejp/1453839980


Export citation

References

  • Dellacherie, C., Meyer, P.A. (1980) Probabilités et potentiel, Chapters V-VIII, Hermann, Paris 1980.
  • Engelking, R., General Topology, Helderman, Berlin 1989.
  • Fernique, X., Processus linéaires, processus généralisés, Ann. Inst. Fourier (Grenoble), 17 (1967), 1-92.
  • Fernique, X., Convergence en loi de variables alétoires et de fonctions alétoires, propriétes de compacité des lois, II, in: J. Az'ema, P.A. Meyer, M. Yor, (Eds.) Séminaire de Probabilités XXVII, Lecture Notes in Math., 1557, 216-232, Springer, Berlin 1993.
  • Jakubowski, A., The a.s. Skorohod representation for subsequences in nonmetric spaces, Theory Probab. Appl., 42 (1997), 209-216, (preprint).
  • Jakubowski, A., Convergence in various topologies for stochastic integrals driven by semimartingales, Ann. Probab., 24 (1996), 2141-2153.
  • Jakubowski, A., From convergence of functions to convergence of stochastic processes. On Skorokhod's sequential approach to convergence in distribution., to appear in A Volume in Honour of A.V. Skorokhod, VSP 1997, (preprint).
  • Jakubowski, A., Mémin, J., Pages, G., Convergence en loi des suites d'intégrales stochastiques sur l'espace $GD^1$ de Skorokhod, Probab. Th. Rel. Fields, 81 (1989), 111-137.
  • Kantorowich, L.V., Vulih, B.Z. & Pinsker, A.G., Functional Analysis in Partially Ordered Spaces (in Russian), Gostekhizdat, Moscow 1950.
  • Kisyński, J., Convergence du type L, Colloq. Math., 7 (1960), 205-211.
  • Kurtz, T., Random time changes and convergence in distribution under the Meyer-Zheng conditions, Ann. Probab., 19 (1991), 1010-1034.
  • Kurtz, T., Protter, P., Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab., 19 (1991), 1035-1070.
  • Mémin, J., Słomiński, L. Condition UT et stabilité en loi des solutions d'equations différentieles stochastiques, Sém. de Probab. XXV, Lecture Notes in Math., 1485, 162-177, Springer, Berlin 1991.
  • Meyer, P.A., Zheng, W.A., Tightness criteria for laws of semimartingales, Ann. Inst. Henri Poincar'e B, 20 (1984), 353-372.
  • Protter, Ph., Stochastic Integration and Differential Equations. A New Approach., 2nd Ed., Springer 1992.
  • Skorohod,A.V., Limit theorems for stochastic processes, Theor. Probability Appl., 1 (1956), 261-290.
  • Słomiński, L., Stability of strong solutions of stochastic differential equations, Stoch. Proc. Appl., 31 (1989), 173-202.
  • Słomiński, L., Stability of stochastic differential equations driven by general semimartingales, Dissertationes Math., CCCXLIX (1996), 113 p.
  • Stricker, C., Lois de semimartingales et critères de compacité, Séminares de probabilités XIX. Lect. Notes in Math., 1123, Springer, Berlin 1985.
  • Topso e, F., A criterion for weak convergence of measures with an application to convergence of measures on $GD,[0,1]$, Math. Scand. 25 (1969), 97-104.