Electronic Communications in Probability

Generalized Peano problem with Lévy noise

Ilya Pavlyukevich and Andrey Pilipenko

Full-text: Open access

Abstract

We revisit the zero-noise Peano selection problem for Lévy-driven stochastic differential equation considered in [Pilipenko and Proske, Statist. Probab. Lett., 132:62–73, 2018] and show that the selection phenomenon pertains in the multiplicative noise setting and is robust with respect to certain perturbations of the irregular drift and of the small jumps of the noise.

Article information

Source
Electron. Commun. Probab., Volume 25 (2020), paper no. 85, 14 pp.

Dates
Received: 28 November 2020
Accepted: 30 November 2020
First available in Project Euclid: 30 December 2020

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1609319090

Digital Object Identifier
doi:10.1214/20-ECP365

Subjects
Primary: 60H10: Stochastic ordinary differential equations [See also 34F05]
Secondary: 60F05: Central limit and other weak theorems 60G51: Processes with independent increments; Lévy processes 34A12: Initial value problems, existence, uniqueness, continuous dependence and continuation of solutions 34E10: Perturbations, asymptotics 34F05: Equations and systems with randomness [See also 34K50, 60H10, 93E03]

Keywords
Lévy process stochastic differential equation selection problem zero noise limit Peano theorem non-uniqueness irregular drift

Rights
Creative Commons Attribution 4.0 International License.

Citation

Pavlyukevich, Ilya; Pilipenko, Andrey. Generalized Peano problem with Lévy noise. Electron. Commun. Probab. 25 (2020), paper no. 85, 14 pp. doi:10.1214/20-ECP365. https://projecteuclid.org/euclid.ecp/1609319090


Export citation

References

  • [1] R. Bafico and P. Baldi, Small random perturbations of Peano phenomena, Stochastics 6 (1982), no. 3–4, 279–292.
  • [2] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular Variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987.
  • [3] Z.-Q. Chen and L. Wang, Uniqueness of stable processes with drift, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2661–2675.
  • [4] F. Delarue and F. Flandoli, The transition point in the zero noise limit for a 1D Peano example, Discrete Contin. Dyn. Syst. 34 (2014), no. 10, 4071–4083.
  • [5] I. I. Gikhman and A. V. Skorokhod, Stokhasticheskie differentsial$'$nye uravneniya i ikh prilozheniya (Russian) [Stochastic differential equations and their applications], Naukova Dumka, Kiev, 1982.
  • [6] M. Gradinaru, S. Herrmann, and B. Roynette, A singular large deviations phenomenon, Ann. Inst. H. Poincaré Probab. Statist. 37 (2001), no. 5, 555–580.
  • [7] P. Hartman, Ordinary differential equations, John Wiley & Sons, New York, 1964.
  • [8] J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, second ed., Grundlehren der Mathematischen Wissenschaften, vol. 288, Springer, Berlin, 2003.
  • [9] I. G. Krykun and S. Ya. Makhno, The Peano phenomenon for Itô equations, J. Math. Sci. 192 (2013), no. 4, 441–458.
  • [10] N. V. Krylov and M. Röckner, Strong solutions of stochastic equations with singular time dependent drift, Probab. Theory Related Fields 131 (2005), no. 2, 154–196.
  • [11] A. Kulik and I. Pavlyukevich, Non-Gaussian limit theorem for non-linear Langevin equations driven by Lévy noise, Ann. Inst. Henri Poincaré Probab. Stat. 55 (2019), no. 3, 1278–1315.
  • [12] A. M. Kulik, On weak uniqueness and distributional properties of a solution to an SDE with $\alpha $-stable noise, Stochastic Process. Appl. 129 (2019), no. 2, 473–506.
  • [13] O. Menoukeu-Pamen and S. E. A. Mohammed, Flows for singular stochastic differential equations with unbounded drifts, J. Funct. Anal. 277 (2019), no. 5, 1269–1333.
  • [14] A. Pilipenko and F. N. Proske, On perturbations of an ODE with non-Lipschitz coefficients by a small self-similar noise, Statist. Probab. Lett. 132 (2018), 62–73.
  • [15] E. Priola, Pathwise uniqueness for singular SDEs driven by stable processes, Osaka J. Math. 49 (2012), no. 2, 421–447.
  • [16] E. Priola, Davie’s type uniqueness for a class of SDEs with jumps, Ann. Inst. Henri Poincaré Probab. Stat. 54 (2018), no. 2, 694–725.
  • [17] W. E. Pruitt, The growth of random walks and Lévy processes, Ann. Probab. 9 (1981), no. 6, 948–956.
  • [18] K. Sato, Lévy processes and infinitely divisible distributions, Cambridge Studies in Advanced Mathematics, vol. 68, Cambridge University Press, Cambridge, 1999.
  • [19] R. Situ, Theory of Stochastic Differential Equations with Jumps and Applications, Mathematical and Analytical Techniques with Applications to Engineering, Springer, New York, NY, 2005.
  • [20] D. Stroock and S. R. S. Varadhan, Multidimensional Diffusion Processes, Grundlehren der Mathematischen Wissenschaften, vol. 233, Springer, Berlin, 1979.
  • [21] H. Tanaka, M. Tsuchiya, and S. Watanabe, Perturbation of drift-type for Lévy processes, J. Math. Kyoto Univ. 14 (1974), no. 1, 73–92.
  • [22] D. Trevisan, Zero noise limits using local times, Electron. Commun. Probab. 18 (2013), no. 31, 1–7.
  • [23] A. Ju. Veretennikov, Strong solutions and explicit formulas for solutions of stochastic integral equations, Mat. Sb. (N.S.) 111(153) (1980), no. 3, 434–452.
  • [24] A. Yu. Veretennikov, Approximation of ordinary differential equations by stochastic differential equations, Mat. Zametki 33 (1983), no. 6, 476–477.
  • [25] A. K. Zvonkin, A transformation of the phase space of a diffusion process that removes the drift, Mat. Sb. (N.S.) 93(135) (1974), no. 1, 129–149.