Electronic Communications in Probability
- Electron. Commun. Probab.
- Volume 25 (2020), paper no. 83, 8 pp.
A tame sequence of transitive Boolean functions
Abstract
Given a sequence of Boolean functions $ (f_{n})_{n \geq 1} $, $ f_{n} \colon \{ 0,1 \}^{n} \to \{ 0,1 \}$, and a sequence $ (X^{(n)})_{n\geq 1} $ of continuous time $ p_{n} $-biased random walks $ X^{(n)} = (X_{t}^{(n)})_{t \geq 0}$ on $ \{ 0,1 \}^{n} $, let $ C_{n} $ be the (random) number of times in $ (0,1) $ at which the process $ (f_{n}(X_{t}))_{t \geq 0} $ changes its value. In [7], the authors conjectured that if $ (f_{n})_{n \geq 1} $ is non-degenerate, transitive and satisfies $ \lim _{n \to \infty } \mathbb {E}[C_{n}] = \infty $, then $ (C_{n})_{n \geq 1} $ is not tight. We give an explicit example of a sequence of Boolean functions which disproves this conjecture.
Article information
Source
Electron. Commun. Probab., Volume 25 (2020), paper no. 83, 8 pp.
Dates
Received: 11 June 2020
Accepted: 8 December 2020
First available in Project Euclid: 23 December 2020
Permanent link to this document
https://projecteuclid.org/euclid.ecp/1608714241
Digital Object Identifier
doi:10.1214/20-ECP366
Subjects
Primary: 60K99: None of the above, but in this section
Keywords
Boolean functions
Rights
Creative Commons Attribution 4.0 International License.
Citation
Forsström, Palö Forsström. A tame sequence of transitive Boolean functions. Electron. Commun. Probab. 25 (2020), paper no. 83, 8 pp. doi:10.1214/20-ECP366. https://projecteuclid.org/euclid.ecp/1608714241