Electronic Communications in Probability

Metrics on sets of interval partitions with diversity

Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel

Full-text: Open access

Abstract

We first consider interval partitions whose complements are Lebesgue-null and introduce a complete metric that induces the same topology as the Hausdorff distance (between complements). This is done using correspondences between intervals. Further restricting to interval partitions with $\alpha $-diversity, we then adjust the metric to incorporate diversities. We show that this second metric space is Lusin. An important feature of this topology is that path-continuity in this topology implies the continuous evolution of diversities. This is important in related work on tree-valued stochastic processes where diversities are branch lengths.

Article information

Source
Electron. Commun. Probab., Volume 25 (2020), paper no. 38, 16 pp.

Dates
Received: 5 July 2019
Accepted: 10 May 2020
First available in Project Euclid: 9 June 2020

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1591668057

Digital Object Identifier
doi:10.1214/20-ECP317

Subjects
Primary: 60J25: Continuous-time Markov processes on general state spaces 60J60: Diffusion processes [See also 58J65] 60J80: Branching processes (Galton-Watson, birth-and-death, etc.)
Secondary: 60G18: Self-similar processes 60G52: Stable processes 60G55: Point processes

Keywords
interval partition Poisson–Dirichlet distribution $\alpha $-diversity

Rights
Creative Commons Attribution 4.0 International License.

Citation

Forman, Noah; Pal, Soumik; Rizzolo, Douglas; Winkel, Matthias. Metrics on sets of interval partitions with diversity. Electron. Commun. Probab. 25 (2020), paper no. 38, 16 pp. doi:10.1214/20-ECP317. https://projecteuclid.org/euclid.ecp/1591668057


Export citation

References

  • [1] David J. Aldous, Exchangeability and related topics, École d’été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198.
  • [2] David Aldous, The continuum random tree. I, Ann. Probab. 19 (1991), no. 1, 1–28.
  • [3] Jean Bertoin, Random fragmentation and coagulation processes, Cambridge Studies in Advanced Mathematics, vol. 102, Cambridge University Press, Cambridge, 2006.
  • [4] Patrick Billingsley, Convergence of probability measures, second ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons, Inc., New York, 1999, A Wiley-Interscience Publication.
  • [5] Cristina Costantini, Pierpaolo De Blasi, Stewart N. Ethier, Matteo Ruggiero, and Dario Spanó, Wright–Fisher construction of the two-parameter Poisson–Dirichlet diffusion, Ann. Appl. Probab. 27 (2017), no. 3, 1923–1950.
  • [6] Daryl J. Daley and David Vere-Jones, An introduction to the theory of point processes. Vol. II, second ed., Probability and its Applications (New York), Springer, New York, 2008, General theory and structure.
  • [7] Richard M. Dudley, Real analysis and probability, Cambridge Studies in Advanced Mathematics, vol. 74, Cambridge University Press, Cambridge, 2002, Revised reprint of the 1989 original.
  • [8] Stewart Ethier, A property of Petrov’s diffusion, Electron. Commun. Probab. 19 (2014), no. 65, 1–4.
  • [9] Steven N. Evans, Jim Pitman, and Anita Winter, Rayleigh processes, real trees, and root growth with re-grafting, Probab. Theory Related Fields 134 (2006), no. 1, 81–126.
  • [10] Shui Feng and Feng-Yu Wang, A class of infinite-dimensional diffusion processes with connection to population genetics, J. Appl. Probab. 44 (2007), no. 4, 938–949.
  • [11] Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Uniform control of local times of spectrally positive stable processes, Ann. Appl. Probab. 28 (2018), no. 4, 2592–2634.
  • [12] Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Aldous diffusion I: a projective system of continuum $k$-tree evolutions, arXiv:1809.07756 [math.PR], 2018.
  • [13] Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Diffusions on a space of interval partitions: construction from marked Lévy processes, arXiv:1909.02584 [math.PR], 2019.
  • [14] Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Diffusions on a space of interval partitions: Poisson–Dirichlet stationary distributions, arXiv:1910.07626 [math.PR], 2019.
  • [15] Noah Forman, Soumik Pal, Douglas Rizzolo, and Matthias Winkel, Interval partition diffusions: connection with Petrov’s Poisson–Dirichlet diffusions, Work in progress, revising parts of arXiv:1609.06706 [math.PR], 2020.
  • [16] Alexander V. Gnedin, The representation of composition structures, Ann. Probab. 25 (1997), no. 3, 1437–1450.
  • [17] Alexander V. Gnedin, Regeneration in random combinatorial structures, Probability Surveys 7 (2010), 105–156.
  • [18] Alexander Gnedin and Jim Pitman, Regenerative composition structures, Ann. Probab. 33 (2005), no. 2, 445–479.
  • [19] Alexander Gnedin, Jim Pitman, and Marc Yor, Asymptotic laws for compositions derived from transformed subordinators, Ann. Probab. 34 (2006), no. 2, 468–492.
  • [20] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, second ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288, Springer-Verlag, Berlin, 2003.
  • [21] John Frank Charles Kingman, Random partitions in population genetics, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 361 (1978), no. 1704, 1–20.
  • [22] Wolfgang Löhr, Leonid Mytnik, and Anita Winter, The Aldous chain on cladograms in the diffusion limit, arXiv:1805.12057 [math.PR], 2018.
  • [23] Grégory Miermont, Tessellations of random maps of arbitrary genus, Ann. Sci. Éc. Norm. Supér. (4) 42 (2009), no. 5, 725–781.
  • [24] Leonid A. Petrov, A two-parameter family of infinite-dimensional diffusions on the Kingman simplex, Funktsional. Anal. i Prilozhen. 43 (2009), no. 4, 45–66.
  • [25] Jim Pitman, Exchangeable and partially exchangeable random partitions, Probab. Theory Related Fields 102 (1995), no. 2, 145–158.
  • [26] Jim Pitman, Combinatorial stochastic processes, Lecture Notes in Mathematics, vol. 1875, Springer-Verlag, Berlin, 2006, Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 7–24, 2002.
  • [27] Jim Pitman and Matthias Winkel, Regenerative tree growth: binary self-similar continuum random trees and Poisson–Dirichlet compositions, Ann. Probab. 37 (2009), no. 5, 1999–2041.
  • [28] Jim Pitman and Marc Yor, Arcsine laws and interval partitions derived from a stable subordinator, Proc. London Math. Soc. (3) 65 (1992), no. 2, 326–356.
  • [29] L. C. G. Rogers and David Williams, Diffusions, Markov processes, and martingales. Vol. 1, second ed., Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons Ltd., Chichester, 1994, Foundations.
  • [30] Matteo Ruggiero and Stephen G. Walker, Countable representation for infinite dimensional diffusions derived from the two-parameter Poisson–Dirichlet process, Electron. Commun. Probab. 14 (2009), 501–517.
  • [31] Matteo Ruggiero, Stephen G. Walker, and Stefano Favaro, Alpha-diversity processes and normalized inverse-Gaussian diffusions, Ann. Appl. Probab. 23 (2013), no. 1, 386–425.