Electronic Communications in Probability

Practical criteria for $R$-positive recurrence of unbounded semigroups

Nicolas Champagnat and Denis Villemonais

Full-text: Open access


The goal of this note is to show how recent results on the theory of quasi-stationary distributions allow us to deduce general criteria for the geometric convergence of normalized unbounded semigroups.

Article information

Electron. Commun. Probab., Volume 25 (2020), paper no. 6, 11 pp.

Received: 17 April 2019
Accepted: 12 January 2020
First available in Project Euclid: 28 January 2020

Permanent link to this document

Digital Object Identifier

Primary: 60J05: Discrete-time Markov processes on general state spaces 60J25: Continuous-time Markov processes on general state spaces 47A35: Ergodic theory [See also 28Dxx, 37Axx]

R-positivity quasi-stationary distributions mixing properties Foster-Lyapunov criteria

Creative Commons Attribution 4.0 International License.


Champagnat, Nicolas; Villemonais, Denis. Practical criteria for $R$-positive recurrence of unbounded semigroups. Electron. Commun. Probab. 25 (2020), paper no. 6, 11 pp. doi:10.1214/20-ECP288. https://projecteuclid.org/euclid.ecp/1580180424

Export citation


  • [1] Vincent Bansaye, Bertrand Cloez, and Pierre Gabriel, Ergodic behavior of non-conservative semigroups via generalized doeblin’s conditions, Acta Applicandae Mathematica (2019), To appear.
  • [2] Vincent Bansaye, Bertrand Cloez, Pierre Gabriel, and Aline Marguet, A non-conservative Harris’ ergodic theorem, arXiv e-prints (2019), arXiv:1903.03946.
  • [3] Jean Bertoin, On a Feynman-Kac approach to growth-fragmentation semigroups and their asymptotic behaviors, arXiv e-prints (2018), arXiv:1804.04905.
  • [4] Jean Bertoin and Alexander Watson, The strong Malthusian behavior of growth-fragmentation processes, arXiv e-prints (2019), arXiv:1901.07251.
  • [5] Jean Bertoin and Alexander Watson, A probabilistic approach to spectral analysis of growth-fragmentation equations, Journal of Functional Analysis 274 (2018), no. 8, 2163–2204.
  • [6] John D. Biggins and Andreas Kyprianou, Measure change in multitype branching, Adv. in Appl. Probab. 36 (2004), no. 2, 544–581.
  • [7] Garrett Birkhoff, Extensions of Jentzsch’s theorem, Trans. Amer. Math. Soc. 85 (1957), 219–227.
  • [8] Patrick Cattiaux, Pierre Collet, Amaury Lambert, Servet Martínez, Sylvie Méléard, and Jaime San Martín, Quasi-stationary distributions and diffusion models in population dynamics, Ann. Probab. 37 (2009), no. 5, 1926–1969.
  • [9] Nicolas Champagnat and Denis Villemonais, Exponential convergence to quasi-stationary distribution and Q-process, Probab. Theory Related Fields 164 (2016), no. 1, 243–283.
  • [10] Nicolas Champagnat and Denis Villemonais, General criteria for the study of quasi-stationarity, arXiv e-prints (2017), arXiv:1712.08092.
  • [11] Bertrand Cloez, Limit theorems for some branching measure-valued processes, Advances in Applied Probability 49 (2017), no. 2, 549–580.
  • [12] Pierre Collet, Servet Martínez, Sylvie Méléard, and Jaime San Martín, Quasi-stationary distributions for structured birth and death processes with mutations, Probability Theory and Related Fields 151 (2011), 191–231, 10.1007/s00440-010-0297-4.
  • [13] Pierre Collet, Servet Martínez, and Jaime San Martín, Quasi-stationary distributions, Probability and its Applications (New York), Springer, Heidelberg, 2013, Markov chains, diffusions and dynamical systems.
  • [14] Pierre Del Moral, Feynman-Kac formulae, Probability and its Applications (New York), Springer-Verlag, New York, 2004, Genealogical and interacting particle systems with applications.
  • [15] Pierre Del Moral, Mean field simulation for Monte Carlo integration, Monographs on Statistics and Applied Probability, vol. 126, CRC Press, Boca Raton, FL, 2013.
  • [16] Randal Douc, Eric Moulines, Pierre Priouret, and Philippe Soulier, Markov chains, Springer, 2018.
  • [17] P. A. Ferrari, H. Kesten, and S. Martínez, $R$-positivity, quasi-stationary distributions and ratio limit theorems for a class of probabilistic automata, Ann. Appl. Probab. 6 (1996), no. 2, 577–616.
  • [18] Grégoire Ferré, Mathias Rousset, and Gabriel Stoltz, More on the long time stability of Feynman-Kac semigroups, arXiv e-prints (2018), arXiv:1807.00390.
  • [19] Alexandru Hening and Martin Kolb, Quasistationary distributions for one-dimensional diffusions with singular boundary points, Stochastic Processes and their Applications 129 (2019), no. 5, 1659–1696.
  • [20] Nobuyuki Ikeda, Masao Nagasawa, and Shinzo Watanabe, Branching Markov processes. I, J. Math. Kyoto Univ. 8 (1968), 233–278.
  • [21] Nobuyuki Ikeda, Masao Nagasawa, and Shinzo Watanabe, Branching Markov processes. II, J. Math. Kyoto Univ. 8 (1968), 365–410.
  • [22] Nobuyuki Ikeda, Masao Nagasawa, and Shinzo Watanabe, Branching Markov processes. III, J. Math. Kyoto Univ. 9 (1969), 95–160.
  • [23] Peter Jagers, General branching processes as Markov fields, Stochastic Process. Appl. 32 (1989), no. 2, 183–212.
  • [24] Martin Kolb and David Steinsaltz, Quasilimiting behavior for one-dimensional diffusions with killing, Ann. Probab. 40 (2012), no. 1, 162–212.
  • [25] Cécile Mailler and Denis Villemonais, Stochastic approximation on non-compact measure spaces and application to measure-valued Pólya processes, Ann. Appl. Probab. (2020), To appear.
  • [26] Sylvie Méléard and Denis Villemonais, Quasi-stationary distributions and population processes, Probab. Surv. 9 (2012), 340–410.
  • [27] Sean Meyn and Richard L. Tweedie, Markov chains and stochastic stability, second ed., Cambridge University Press, Cambridge, 2009, With a prologue by Peter W. Glynn.
  • [28] Seppo Niemi and Esa Nummelin, On nonsingular renewal kernels with an application to a semigroup of transition kernels, Stochastic Process. Appl. 22 (1986), no. 2, 177–202.
  • [29] Esa Nummelin, General irreducible Markov chains and nonnegative operators, Cambridge Tracts in Mathematics, vol. 83, Cambridge University Press, Cambridge, 1984.
  • [30] Huyên Pham, Continuous-time stochastic control and optimization with financial applications, Stochastic Modelling and Applied Probability, vol. 61, Springer-Verlag, Berlin, 2009.
  • [31] Pekka Tuominen and Richard L. Tweedie, Exponential decay and ergodicity of general Markov processes and their discrete skeletons, Adv. in Appl. Probab. 11 (1979), no. 4, 784–803.
  • [32] Aurélien Velleret, Unique Quasi-Stationary Distribution, with a possibly stabilizing extinction, arXiv e-prints (2018), arXiv:1802.02409.