Electronic Communications in Probability

Characterising random partitions by random colouring

Jakob E. Björnberg, Cécile Mailler, Peter Mörters, and Daniel Ueltschi

Full-text: Open access

Abstract

Let $(X_{1},X_{2},...)$ be a random partition of the unit interval $[0,1]$, i.e. $X_{i}\geq 0$ and $\sum _{i\geq 1} X_{i}=1$, and let $(\varepsilon _{1}, \varepsilon _{2},...)$ be i.i.d. Bernoulli random variables of parameter $p \in (0,1)$. The Bernoulli convolution of the partition is the random variable $Z =\sum _{i\geq 1} \varepsilon _{i} X_{i}$. The question addressed in this article is: Knowing the distribution of $Z$ for some fixed $p\in (0,1)$, what can we infer about the random partition $(X_{1}, X_{2},...)$? We consider random partitions formed by residual allocation and prove that their distributions are fully characterised by their Bernoulli convolution if and only if the parameter $p$ is not equal to $\frac{1} {2}$.

Article information

Source
Electron. Commun. Probab., Volume 25 (2020), paper no. 4, 12 pp.

Dates
Received: 13 July 2019
Accepted: 21 December 2019
First available in Project Euclid: 13 January 2020

Permanent link to this document
https://projecteuclid.org/euclid.ecp/1578906086

Digital Object Identifier
doi:10.1214/19-ECP283

Subjects
Primary: 60E10: Characteristic functions; other transforms 60G57: Random measures 60K35: Interacting random processes; statistical mechanics type models; percolation theory [See also 82B43, 82C43]

Keywords
partition structures residual allocation

Rights
Creative Commons Attribution 4.0 International License.

Citation

Björnberg, Jakob E.; Mailler, Cécile; Mörters, Peter; Ueltschi, Daniel. Characterising random partitions by random colouring. Electron. Commun. Probab. 25 (2020), paper no. 4, 12 pp. doi:10.1214/19-ECP283. https://projecteuclid.org/euclid.ecp/1578906086


Export citation

References

  • [1] M. Aizenman, B. Nachtergaele, Geometric aspects of quantum spin states, Comm. Math. Phys. 164, 17–63 (1994).
  • [2] J. Bertoin, Random fragmentation and coagulation processes, Cambridge Studies Adv. Math. 102, Cambridge University Press (2006).
  • [3] V. Betz, D. Ueltschi, Spatial random permutations and Poisson-Dirichlet law of cycle lengths, Electr. J. Probab. 16, 1173–1192 (2011).
  • [4] P. Billingsley, Convergence of Probability Measures, 2nd ed, Wiley (1999).
  • [5] J.E. Björnberg, J. Fröhlich, D. Ueltschi, Quantum spins and random loops on the complete graph, Comm. Math. Phys. (2020); https://doi.org/10.1007/s00220-019-03634-x
  • [6] J.E. Björnberg, M. Kotowski, B. Lees, P. Miłoś, The interchange process with reversals on the complete graph, Electr. J. Probab. 24, paper no. 108 (2019).
  • [7] P. Diaconis, D. Freedman, Iterated random functions, SIAM review 41.1, 45–76 (1999).
  • [8] W.J. Ewens, The sampling theory of selectively neutral alleles, Theor. Popul. Biol. 3, 87–112 (1972).
  • [9] P.D. Feigin, and R.L. Tweedie, Linear functionals and Markov chains associated with Dirichlet processes, Math. Proc. Cambridge Phil. Soc. 105(3) (1989).
  • [10] C. Goldschmidt, D. Ueltschi, P. Windridge, Quantum Heisenberg models and their probabilistic representations, Entropy and the Quantum II, Contemp. Math. 552, 177–224 (2011).
  • [11] J.F.C. Kingman, Random discrete distributions, J. Royal Statist. Soc. B 37, 1–22 (1975).
  • [12] J.F.C. Kingman, The representation of partition structures, J. London Math. Soc. 2.2, 374–380 (1978).
  • [13] Y. Peres, W. Schlag and B. Solomyak, Sixty years of Bernoulli convolutions, Fractal geometry and stochastics II, 39–65, Birkhäuser, Basel (2000).
  • [14] J. Pitman, Random weighted averages, partition structures and generalized arcsine laws, arXiv:1804.07896 (2018)
  • [15] J. Pitman, M. Yor, The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab. 25, 855–900 (1997).
  • [16] S.G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives: theory and applications, Gordon and Breach (1993).
  • [17] O. Schramm, Compositions of random transpositions, Israel J. Math. 147, 221–243 (2005).
  • [18] S. Sosnovskiy, On financial applications of the two-parameter Poisson-Dirichlet distribution, arXiv:1501.01954 (2015)
  • [19] J.E. Steif and J. Tykesson, Generalized Divide and Color models, to appear in ALEA, arXiv:1702.04296.
  • [20] B. Tóth, Improved lower bound on the thermodynamic pressure of the spin $1/2$ Heisenberg ferromagnet, Lett. Math. Phys. 28, 75–84 (1993).
  • [21] D. Ueltschi, Random loop representations for quantum spin systems, J. Math. Phys. 54, 083301, 1–40 (2013).